Differentiation and Taxonomic Identification of Roburoid Oaks in the Caucasian and Crimean Regions Using Nuclear Microsatellite Markers
- Authors: Semerikova S.A.1, Aliev K.U.2, Semerikov V.L.1
-
Affiliations:
- Institute of Plant and Animal Ecology, Ural Branch of Russian Academy of Science
- Mountain Botanical Garden of Dagestan Federal Research Centre of the Russian Academy of Sciences
- Issue: Vol 60, No 8 (2024)
- Pages: 28-47
- Section: ГЕНЕТИКА РАСТЕНИЙ
- URL: https://rjpbr.com/0016-6758/article/view/667212
- DOI: https://doi.org/10.31857/S0016675824080035
- EDN: https://elibrary.ru/bgcllp
- ID: 667212
Cite item
Abstract
The inter- and intra-specific structure of genetic variability was studied using 18 microsatellite loci (nSSRs) in closely related roburoid oaks in the Crimean-Caucasian region.The seven most widespread Quercus taxa in the region were studied in 29 morphologically pure populations from different parts of the North Caucasus, Transcaucasia, Crimea and northeastern Europe. Most taxa were studied using nSSR markers for the first time. Among the 492 trees studied, Bayesian clustering method implemented in STRUCTURE identified clusters corresponding to the pedunculate oak Quercus robur, the Hartwiss oak Q. hartwissiana, the Caucasian oak Q. macranthera, the downy oak Q. pubescens and three subspecies of sessile oak: Q. petraea ssp. petraea, Q. petraea ssp. iberica, Q. petraea ssp. medwediewii. Geographic structure was identified within Q. robur, Q. pubescens and Q. p. ssp. petraea. The 18 nSSR loci used are efficient in the taxonomic assignment of individuals, and identifying hybrids. The close relationship between the “long-pedunculate” roburoid oaks (Q. robur and Q. hartwissiana) is shown, with a greater difference from other species. For one of the subspecies of sessile oak, widespread in the North Caucasus and Crimea Q. petraea ssp. medwediewii (syn. Q. calcarea), or limestone oak, significant differences from other taxa were found, reaching the species level. The assumption of a possible hybrid origin of this taxon as a result of hybridization of Q. petraea and Q. pubescens is not confirmed by genetic analysis. The other two subspecies of Q. petraea (Q. p. ssp. petraea and Georgian oak Q. p. ssp. iberica) are differentiated to a lesser extent and are related to each other, which confirms the legitimacy of distinguishing two geographically isolated taxa at the rank of subspecies. The highest variability was observed in Q. pubescens (He = 0.777). In Q. p. ssp. medwediewii variability was lower than in other widespread taxa (He = 0.652), and was approximately at the level of variability of Q. hartwissiana (He = 0.633) and Q. macranthera (He = 0.659). Clear differentiation of taxa by nuclear markers shows the limited introgression in closely related oak species in the Caucasus and Crimea. The identified genetic clusters can be used as reference groups for further population genetic studies of oaks in the Crimean-Caucasian region.
Full Text

About the authors
S. A. Semerikova
Institute of Plant and Animal Ecology, Ural Branch of Russian Academy of Science
Author for correspondence.
Email: s.a.semerikova@ipae.uran.ru
Russian Federation, Ekaterinburg, 620144
Kh. U. Aliev
Mountain Botanical Garden of Dagestan Federal Research Centre of the Russian Academy of Sciences
Email: s.a.semerikova@ipae.uran.ru
Russian Federation, Makhachkala, 367000
V. L. Semerikov
Institute of Plant and Animal Ecology, Ural Branch of Russian Academy of Science
Email: s.a.semerikova@ipae.uran.ru
Russian Federation, Ekaterinburg, 620144
References
- Меницкий Ю.Л. Дубы Кавказа. Обзор кавказских представителей секции Quercus. Л.: Наука, 1971. 196 с.
- Меницкий Ю.Л. Дубы (Quercus L.) Юго-Западной Азии // Новости систематики высших растений. Л.: Наука, 1972. Т. 9. С. 105–140.
- Меницкий Ю.Л. Дубы Азии. Л.: Наука, 1984. 315 с.
- Kremer A., Hipp A.L. Oaks: An evolutionary success story // New Phytologist. 2020. V. 226. № 4. P. 987–1011. https://doi.org/10.1111/nph.16274
- Hipp A.L., Manos P.S., Hahn M. et al. Genomic landscape of the global oak phylogeny// New Phytologist. 2020. V. 226. № 4. P. 1198–1212. https://doi.org/10.1111/nph.16162
- Конспект флоры Кавказа: в 3 томах / Под ред. Кудряшовой Г.Л., Татанова И.В. СПб.; М.: Тов-во науч. изд. КМК, 2012. T. 3. Ч. 2. 623 с.
- Schmidt P.A. Oaks and oak forests in Caucasia // Proc. Fourth Intern. oak conf. 2004. № 15. P. 9–29.
- Семериков Л.Ф. Популяционная структура древесных растений (на примере видов дуба европейской части СССР и Кавказа). М.: Наука, 1986. 140 с.
- Троицкий Н.Д. Предварительные итоги изучения дубов Крымского государственного заповедника и прилегающего района южного берега Крыма (систематика в связи с условиями произрастания) // Журнал РБО. 1931. Т. 16. № 4. С. 313–354.
- Черепанов С.К. Сосудистые растения России и сопредельных государств. СПб., 1995. 990 с.
- Valbuena-Carabana M., Gonzalez-Martinez S.C., Hardy O.J., Gil L. Fine-scale spatial genetic structure in mixed oak stands with different levels of hybridization // Mol. Ecol. 2007. V. 16. № 6. P. 1207–1219. https://doi.org/10.1111/j.1365-294X.2007.03231.x
- Fortini P., Viscosi V., Maiuro L. et al. Comparative leaf surface morphology and molecular data of five oaks of subgenus Quercus Oerst. (Fagaceae) // Pl. Biosyst. 2009. V. 143. № 3. P. 543–554. https://doi.org/10.1080/11263500902722980
- Salvini D., Bruschi P., Fineschi S. et al. Natural hybridisation between Quercus petraea (Matt.) Liebl. and Quercus pubescens Willd. within an Italian stand as revealed by microsatellite fingerprinting // Plant Biology. 2009. V. 11. P. 758–765. https://doi.org/10.1111/j.1438-8677.2008.00158.x
- Antonecchia G., Fortini P., Lepais O. et al. Genetic structure of a natural oak community in central Italy: Evidence of gene flow between three sympatric white oak species (Quercus, Fagaceae) // Ann. For. Res. 2015. V. 58. № 2. P. 205–216. https://doi.org/10.15287/afr.2015.415
- Rellstab C., Buhler A., Graf R. et al. Using joint multivariate analyses of leaf morphology and molecular-genetic markers for taxon identification in three hybridizing European white oak species (Quercus spp.) // Annals Forest Sci. 2016. V. 73. № 3. P. 669–679. https://doi.org/10.1007/s13595-016-0552-7
- Mačejovský V., Schmidtová J., Hrivnák M. et al. Interspecific differentiation and gene exchange among the Slovak Quercus sect. Quercus populations // Dendrobiology. 2020. V. 83. P. 20–29. https://doi.org/10.12657/denbio.083.002
- Yücedağ C., Gailing O. Morphological and genetic variation within and among four Quercus petraea and Q. robur natural populations // Turkish J. Bot. 2013. V. 37. № 4. Article 2. P. 619–629. https://doi.org/10.3906/bot-1205-18
- Fortini P., Marzio P.D., Conte A.L. et al. Morphological and molecular results from a geographical transect focusing on Quercus pubescens/Q. virgiliana ecological-altitudinal vicariance in peninsular Italy // Pl. Biosyst. 2022. Т. 156. № 6. P. 1498–1511. https://doi.org/10.1080/11263504.2022.2131923
- Neophytou C., Aravanopoulos F.A., Fink S., Dounavi A. Detecting interspecific and geographic differentiation patterns in two interfertile oak species (Quercus petraea (Matt.) Liebl. and Q. robur L.) using small sets of microsatellite markers // For. Ecol. Manag. 2010. V. 259. P. 2026–2035. https://doi.org/10.1016/j.forec o.2010.02.013
- Guichoux E., Lagache L., Wagner S. et al. Two highly validated multiplexes (12-plex and 8-plex) for species delimitation and parentage analysis in oaks (Quercus spp.) // Mol. Ecol. Resour. 2011. V. 11. P. 578–585. https://doi.org/10.1111/j.1755-0998.2011.02983.x
- Curtu A.L., Gailing O., Leinemann L., Finkeldey R. Genetic variation and differentiation within a natural community of five oak species (Quercus spp.) // Plant. Biol. 2007. V. 9. P. 116–126. https://doi.org/10.1055/s-2006-924542
- Curtu A.L., Moldovan I.C., Enescu C.M. et al. Genetic differentiation between Quercus frainetto Ten. and Q. pubescens Willd. in Romania // Notulae Bot. Horti Agrobot. Cluj-Napoca. 2011. V. 39. № 1. P. 275–282. https://doi.org/10.15835/nbha3915633.
- Curtu A.L., Craciunesc I., Enescu C.M. et al. Fine-scale spatial genetic structure in a multi-oak-species (Quercus spp.) forest // iForest. 2015. V. 8. № 3. P. 324–332. https://doi.org/10.3832/ifor1150-008
- Lepais O., Petit R.J., Guichoux E. et al. Species relative abundance and direction of introgression in oaks // Mol. Ecol. 2009. V. 18. P. 2228–2242. https://doi.org/10.1111/j.1365-294X.2009.04137.x
- Höltken A.M., Buschbom J., Kätzel R. Species integrity of Quercus robur L., Q. petraea (Matt.) Liebl. and Q. pubescens Willd. from the genetic point of view // Allgemeine Forst- und Jagdzeitung: Allg. F. u. J. Ztg. 2012. V. 183. P. 100–110.
- Gerber S., Chadoeuf J., Gugerli F. et al. High rates of gene flow by pollen and seed in oak populations across Europe // PLoS One. 2014. V. 9. e85130. https://doi.org/10.1371/journal.pone.0091301
- Gugerli F., Brodbeck S., Holderegger R. Utility of multilocus genotypes for taxon assignment in stands of closely related European White Oaks from Switzerland // Annals Bot. 2008. V. 102. P. 855–863. https://doi.org/10.1093/aob/mcn164
- Sandurska E., Ulaszewski B., Burczyk J. Genetic diversity and differentiation of coexisting populations of Quercus robur L. and Q. petraea (Matt.) Liebl. // Acta Biol. Crac. Ser. Bot. 2019. V. 61. № 1. P. 17–28. https://doi.org/10.24425/abcsb.2019.127739
- Neophytou C., Gärtner S.M., Vargas-Gaete R. et al. Genetic variation of Central European oaks: shaped by evolutionary factors and human intervention? // Tree Genet. Genom. 2015. V. 11. № 79. https://doi.org/10.1007/s11295-015-0905-7
- Enescu C.M., Curtu A.L., Şofletea N. Is Quercus virgiliana a distinct morphological and genetic entity among European white oaks? // Turkish J. Agriculture and Forestry. 2013. V. 37. № 5. Article 14. https://doi.org/10.3906/tar-1210-28
- Di Pietro R., Di Marzio P., Antonecchia G. et al. Preliminary characterization of the Quercus pubescens complex in southern Italy using molecular markers // Acta Bot. Croat. 2020. V. 78. № 2. P. 107–115. https://doi.org/10.37427/botcro-2020-002
- Di Pietro R., Conte A.L., Di Marzio P. et al. Does the genetic diversity among pubescent white oaks in southern Italy, Sicily and Sardinia islands support the current taxonomic classification? // Eur. J. Forest Res. 2021. V. 140. № 2. P. 1–17. doi: 10.1007/s10342-020-01334-z
- Neophytou C. Bayesian clustering analyses for genetic assignment and study of hybridization in oaks: Effects of asymmetric phylogenies and asymmetric sampling schemes // Tree Genet. Genom. 2014. V. 10. P. 273–285. https://doi.org/10.1007/s11295-013-0680-2
- Семерикова С.А., Подергина С.М., Ташев А.Н., Семериков В.Л. Филогеография видов дуба в Крыму выявляет плейстоценовые рефугиумы и пути миграций // Экология. 2023. V. 54. № 3. С.188–203. https://doi.org/10.31857/S0367059723030058
- Семерикова С.А., Алиев Х.У., Семериков Н.В., Семериков В.Л. Филогеография видов дуба на Кавказе по результатам анализа хлоропластной ДНК // Генетика. 2023. Т. 59. № 7. С. 772–788. https://doi.org/10.31857/S001667582307010X
- Semerikova S.A., Tashev A.N., Semerikov V.L. Genetic diversity and history of pedunculate oak Quercus robur L. in the east of the range // Russ. J. Ecology. 2023. V. 54. №. 5. P. 423–438. https://doi.org/10.1134/S1067413623050089.
- Devey M.E., Bell J.C., Smith D.N. et al. A genetic linkage map for Pinus radiata based on RFLP, RAPD and microsatellite markers // Theor. Appl. Genet. 1996. V. 92. № 6. P. 673–679. https://doi.org/10.1007/BF00226088
- Pritchard J.K., Stephens M., Donnelly P. Inference of population structure using multilocus genotype data // Genetics. 2000. V. 155. P. 945–959.
- Evanno G., Regnaut S., Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study // Mol. Ecol. 2005. V. 14. № 8. P. 2611–2620. doi: 10.1111/j.1365-294X.2005.02553.x
- Li Y.L., Liu J.X. StructureSelector: A web-based software to select and visualize the optimal number of clusters using multiple methods // Mol. Ecol. Resour. 2018. V. 18. № 1. P. 176–177. doi: 10.1111/1755-0998.12719.
- Kopelman N.M., Mayzel J., Jakobsson M. et al. CLUMPAK: A program for identifying clustering modes and packaging population structure inferences across K // Mol. Ecol. Resour. 2015. V. 15. P. 1179–1191. https://doi.org/10.1111/1755-0998.12387
- Puechmaille S.J. The program structure does not reliably recover the correct population structure when sampling is uneven: Subsampling and new estimators alleviate the problem // Mol. Ecol. Resour. 2016. V. 16. P. 608–627. https://doi.org/10.1111/1755-0998.12512
- Peakall R., Smouse P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update // Bioinformatics. 2012. V. 28. P. 2537–2539. https://doi.org/10.1093/bioinformatics/bts460
- Rousset F. GENEPOP’ 007: A complete re-implementation of the GENEPOP software for Windows and Linux // Mol. Ecol. Resour. 2008. V. 8. P. 103–106. https://doi.org/10.1111/j.1471-8286.2007.01931.x
- Van Oosterhout C., Hutchinson W.F., Wills D.P., Shipley P. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data // Mol. Ecol. Notes. 2004. V. 4. P. 535–538. https://doi.org/10.1111/ j.1471-8286.2004.00684.x.
- Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals // Genetics. 1978. V. 83. P. 583–590.
- Rohlf E.J. NTSYS-pc: Numerical taxonomy and multivariate analysis system. Version 1.50. // Exeter Publ. and Applied Biostatistics. 1988.
- Vázquez F.M., García D., Márquez F., Vilaviçosa C.M. Annotations to infrageneric nomenclatura of Quercus L. (FAGACEAE) // Fol. Bot. Extremadurensis. 2023. V. 17. P. 7–64.
- Kučera P. Quercus banatus grows in Slovenia // Thaiszia – J. Botany. 2019. V. 29. № 1. P. 61–69. https://doi.org/10.33542/TJB2019-1-04
- Di Pietro R., Viscosi V., Peruzzi L., Fortini P. A review of the application of the name Quercus dalechampii // Taxon. 2012. V. 61. № 6. P. 1311–1316. doi: 10.1002/tax.616012
- Kučera P. New name for Central Europaean oak formerly labelled as Quercus dalechampii // Biologia. 2018. V. 73. № 4. P. 313–317. https://doi.org/10.2478/s11756-018-0048-z
- Proietti E., Filesi L., Di Marzio P. et al. Morphology, geometric morphometrics, and taxonomy in relict deciduous oaks woods in northern Italy // Rend. Fis. Acc. Lincei. 2021. V. 32. P. 549–564. https://doi.org/10.1007/s12210-021-01001-4
- Papini A., Simeone M.C., Bellarosa R. et al. Quercus macranthera Fisch. & Mey. ex Hohen. and Quercus iberica M. Bieb.: Taxonomic definition and systematic relationships with European oaks inferred from nuclear internal transcribed spacer (ITS) data // Plant Biosystems. 2011. V. 145. № 1. P. 37–49. https://doi.org/10.1080/11263504.2010.502684
- Tóth E.G., Köbölkuti Z.A., Cseke K. et al. A genomic dataset of single‐nucleotide polymorphisms generated by ddRAD tag sequencing in Q. petraea (Matt.) Liebl. populations from Central-Eastern Europe and Balkan Peninsula // Annals Forest Sci. 2021. V. 78. № 43. https://doi.org/10.1007/s13595-021-01051-6
- Jurkšienė G., Baranov O.Y., Kagan D.I. et al. Genetic diversity and differentiation of pedunculate (Quercus robur) and sessile (Q. petraea) oaks. // J. For. Res. 2020. V. 31. P. 2445–2452. https://doi.org/10.1007/s11676-019-01043-3
- Degen B., Blanc-Jolivet C., Mader M. et al. Introgression as an important driver of geographic genetic differentiation within European white oaks // Forests. 2023. V. 14(12). https://doi.org/10.3390/f14122279
Supplementary files
