Molecular Genetic Characteristics of the Mutant Strain B-162/2 of the Bacteria Pseudomonas chlororaphis subsp. aurantiaca
- Authors: Bondarava K.S.1, Liaudanskaya A.I.1, Maximova N.P.1, Verameyenka E.G.1
-
Affiliations:
- Belarusian State University
- Issue: Vol 60, No 8 (2024)
- Pages: 18-27
- Section: ГЕНЕТИКА МИКРООРГАНИЗМОВ
- URL: https://rjpbr.com/0016-6758/article/view/667210
- DOI: https://doi.org/10.31857/S0016675824080024
- EDN: https://elibrary.ru/bgdmab
- ID: 667210
Cite item
Abstract
The production of microorganisms that produce biologically active compounds for agriculture, the chemical, veterinary and pharmaceutical industries as well as for environmental protection continues to be an important direction of microbial biotechnology. One of the most effective approaches to the production of producers is chemical mutagenesis, which, in combination with the right breeding strategy, makes it possible to obtain highly productive strains. A significant disadvantage of chemical mutagenesis is the large number of induced mutations in the genomes of mutant strains, which makes it difficult to identify genes and, accordingly, biosynthetic pathways involved in the production of a given compound. The solution to this problem is modern technologies of genome sequencing and analysis, which make it possible to identify new genes and unknown biochemical pathways involved in the formation of biologically active compounds. The aim of the work was to analyse the genome of the mutant strain B-162/2 of the bacterium Pseudomonas chlororaphis subsp. aurantiaca, which is capable of increased production of biologically active compounds of the phenazine series and is resistant to hydrogen peroxide. When analysing the genome of strain B-162/2 in full size, 6482 coding sequences and 64 coding RNA sequences were identified. Comparison of the genome of the B-162/2 strain with the genome of the wild type B-162 allowed the identification of 39 mutations, 5 of which are localised in intergenic regions, and 34 affected coding sequences. Of the mutations detected, 14 led to a radical amino acid substitution in the proteins and 2 led to the formation of premature stop codons (methyl group sensor and MFS-type transporter). Several substitutions with high values of the Grantham coefficient were found, which could possibly lead to a change in the activity of the proteins concerned. The presence of three regions with phage genes in the genome of the B-162/2 strain was detected.
Full Text

About the authors
K. S. Bondarava
Belarusian State University
Author for correspondence.
Email: BKristinaSav@yandex.ru
Belarus, Minsk, 220030
A. I. Liaudanskaya
Belarusian State University
Email: BKristinaSav@yandex.ru
Belarus, Minsk, 220030
N. P. Maximova
Belarusian State University
Email: BKristinaSav@yandex.ru
Belarus, Minsk, 220030
E. G. Verameyenka
Belarusian State University
Email: BKristinaSav@yandex.ru
Belarus, Minsk, 220030
References
- Zubov V.V., Chemeris D., Vasilov R.G. et al. Brief history of high-throughput nucleic acid sequencing methods // Biomics. 2021. V. 13, № 1. P. 27–46. https://doi.org/10.31301/2221-6197.bmcs.2021-4
- Веремеенко Е.Г., Бондарева К.С., Левданская А.И., Максимова Н.П. Молекулярно-генетическая характеристика мутантного штамма Pseudomonas chlororaphis subsp. аurantiaca с повышенной устойчивостью к пероксиду водорода // Вес. Нац. aкад. навук Беларусі. Сер. біял. навук. 2023. Т. 68. № 2. С. 154–162. https://doi.org/10.29235/1029-8940-2023-68-2-154-162
- Ефимочкина, Н.Р., Шевелева С.А. Перспективные молекулярно-генетические методы секвенирования микроорганизмов в системе оценки и контроля биобезопасности пищевой продукции // Вопр. питания. 2022. Т. 91. № 1. С. 37–52. orcid: https://orcid.org/0000-0002-9071-0326
- Веремеенко Е.Г. Получение, характеристика и применение продуцентов феназиновых антибиотиков бактерий Pseudomonas aurantiaca: Дис. … канд. биол. наук. Минск: Белорусский гос. ун-т, 2010. 157 с.
- Guttenberger N. Recent developments in the isolation, biological function, biosynthesis, and synthesis of phenazine natural products // Bioorg. Med. Chem. 2017. V. 25. № 22. P. 6149–6166. https://doi.org/10.1016/j.bmc.2017.01.002
- Propionix [Электронный ресурс]. – Режим доступа: http://propionix.ru. – Дата доступа: 13.03.2021.
- Simoska O., Cummings D.A., Gaffney E. et al. Enhancing the performance of microbial fuel cells via metabolic engineering of Escherichia coli for phenazine production // ACS Sustainable Chemistry & Engineering. 2023. V. 11. № 32. P. 11855–11866. https://doi.org/10.1021/acssuschemeng.3c01593
- Miksa B. The phenazine scaffold used as cytotoxic pharmacophore applied in bactericidal, antiparasitic and antitumor agents // Helvetica Chimica Acta. 2022. V. 105. № 10. https://doi.org/10.1002/hlca.202200066
- Левданская А.И., Светлова А.С., Максимова Н.П., Веремеенко Е.Г. Экспрессия феназинового оперона у штаммов Pseudomonas chlororaphis subsp. aurantiaca B-162, способных к сверхсинтезу феназиновых соединений // Мол. и прикл. генетика. 2021. Т. 31. С. 93–101. https://doi.org/10.47612/1999-9127-2021-31-93-101
- Миллер Дж. Эксперименты в молекулярной генетике. М.: Мир, 1976. 436 с.
- Shapira M.A., Verameyenka K.G., Liavonchyk K.V. et al. Novel approach of phenazine derivatives isolation from Pseudomonas culture medium // Proc. Biochemistry. 2021. V. 111. № 2. P. 325–331. https://doi.org/10.1016/j.procbio.2021.11.004
- Levitch M.E. Regulation of aromatic amino acid biosynthesis in phenazine-producing strains // J. Bacteriol. 1970. V. 103. № 1. P. 16–19. https://doi.org/10.1128/jb.103.1.16-19.1970
- DGRM [Электронный ресурс]. Режим доступа: https://app.dgrm.net. Дата доступа: 26.01.2024.
- Лысак В.В., Фомина О.В. Важнейшие группы микроорганизмов: пособие. Минск : БГУ, 2012. 92 с. http://elib.bsu.by/handle/123456789/31783
- Adhikary S., Cato M.C., McGary K.L. et al. Non-productive DNA damage binding by DNA glycosylase-like protein Mag2 from Schizosaccharomyces pombe // DNA Repair. 2013. № 12. P. 196–204. http://dx.doi.org/10.1016/j.dnarep.2012.12.001
- Balotra S., Newman J., Cowieson N.P. et al. X-ray structure of the amidase domain of AtzF, the allophanate hydrolase from the cyanuric acid-mineralizing multienzyme complex // Appl. Environ Microbiol. 2015. № 81. P. 470–480. https://doi.org/10.1128/AEM.02783-14
- Sun L., Xin Z., Chuangye Y. et al. Crystal structure of a bacterial homologue of glucose transporters GLUT1–4 // Nature. 2012. V. 490, № 7420. P. 361–366. https://doi.org/10.1038/nature11524
- Tjeerd van Rij E., Wesselink M., Chin-A-Woeng T.F.C. et al. Influence of environmental conditions on the production of phenazine-1-carboxamide by Pseudomonas chlororaphis PCL1391 // MPMI. 2007. V. 17. № 5. P. 557–566. https://doi.org/10.1094/MPMI.2004.17.5.557 Phaster [Электронный ресурс]. – Режим доступа: https://phaster.ca/submissions/ZZ_141c3c5aec. – Дата доступа: 19.01.2024.
Supplementary files
