Genome-Wide Analysis in the Study of the Fetal Growth Restriction Pathogenetics
- 作者: Gavrilenko M.M.1, Trifonova E.A.1, Stepanov V.A.1
-
隶属关系:
- Research Institute of Medical Genetics, Tomsk National Research Medical Center
- 期: 卷 60, 编号 8 (2024)
- 页面: 3-17
- 栏目: ОБЗОРНЫЕ И ТЕОРЕТИЧЕСКИЕ СТАТЬИ
- URL: https://rjpbr.com/0016-6758/article/view/667209
- DOI: https://doi.org/10.31857/S0016675824080015
- EDN: https://elibrary.ru/bgelpt
- ID: 667209
如何引用文章
详细
Fetal growth restriction is a complication of pregnancy that defined as the inability of the fetus to realize its genetically determined growth potential. Despite the high social and medical significance of this problem the exact pathogenesis of fetal growth restriction is not known by now. Therefore, the analysis of the molecular genetics mechanisms of this pathology within the framework of approaches using modern high-performance technologies of next generation sequencing is of undoubted interest. In this review we focused on the analysis of data obtained in studies of the fetal growth restriction genetics component. The authors of these researches used next generation sequencing technologies and carried out whole transcriptome profiling. The results of the genes expression genome-wide analysis in placental tissue allow us to identify 1430 differentially expressed genes between fetal growth restriction and normal pregnancy, of which only 1% were found in at least two studies. These differentially expressed genes are involved in the Wnt/β-catenin signaling pathway that plays an important role in cell migration, neural pattern formation and organogenesis during embryonic development. Common genes are associated with both obstetric and gynecological diseases, as well as with various somatic conditions from the groups of neurodegenerative, cardiovascular diseases and mental disorders, which probably reflects their involvement in the development of postnatal consequences of fetal growth restriction. The results of our work don‘t point only to potential molecular mechanisms and key genes underlying fetal growth restriction, but also indicate the important role of gene-gene communications in this pathology implementation: about 30% of all identified differentially expressed genes products interact with each other within the same gene network. In general, genome-wide RNA sequencing combined with the analysis of protein-protein interactions represents a promising direction in research on the development and functioning of the placenta, as well as the identification of placental insufficiency diseases genetics mechanisms, including fetal growth restriction.
全文:

作者简介
M. Gavrilenko
Research Institute of Medical Genetics, Tomsk National Research Medical Center
编辑信件的主要联系方式.
Email: maria.gavrilenko@medgenetics.ru
俄罗斯联邦, Tomsk, 634050
E. Trifonova
Research Institute of Medical Genetics, Tomsk National Research Medical Center
Email: maria.gavrilenko@medgenetics.ru
俄罗斯联邦, Tomsk, 634050
V. Stepanov
Research Institute of Medical Genetics, Tomsk National Research Medical Center
Email: maria.gavrilenko@medgenetics.ru
俄罗斯联邦, Tomsk, 634050
参考
- Sharma D., Shastri S., Sharma P. Intrauterine growth restriction: antenatal and postnatal aspects // Clin. Med. Insights: Pediatrics. 2016. V. 10. P. 67–83. https://doi.org/10.4137/CMPed.S40070
- Leftwich H.K., Stetson B., Sabol B. et al. Growth restriction: Identifying fetuses at risk // J. Maternal-Fetal and Neonatal Med. 2018. V. 31. № 15. P. 1962–1966. https://doi.org/10.1080/14767058.2017.1332040
- Salmeri N., Carbone I.F., Cavoretto P.I. et al. Epigenetics beyond fetal growth restriction: A comprehensive overview // Mol. Diagnosis and Therapy. 2022. V. 26. № 6. P. 607–626. https://doi.org/10.1007/s40291-022-00611-4
- Yzydorczyk C., Armengaud J.B., Peyter A.C. et al. Endothelial dysfunction in individuals born after fetal growth restriction: Cardiovascular and renal consequences and preventive approaches // J. Developmental Origins Health and Disease. 2017. V. 8. № 4. P. 448–464. https://doi.org/10.1017/S2040174417000265
- Bendix I., Miller S.L., Winterhager E. Causes and consequences of intrauterine growth restriction // Front. Endocrinol. 2020. V. 11. P. 205. https://doi.org/10.3389/fendo.2020.00205
- Piñero J., Ramírez-Anguita J.M., Saüch-Pitarch J. et al. The DisGeNET knowledge platform for disease genomics: 2019 update // Nucl. Acids Res. 2020. V. 48. № D1. P. D845–D855. https://doi.org/10.1093/nar/gkz1021
- Antonazzo P., Alvino G., Cozzi V. et al. Placental IGF2 expression in normal and intrauterine growth restricted (IUGR) pregnancies // Placenta. 2008. V. 29. № 1. P. 99–101. https://doi.org/10.1016/j.placenta.2007.06.010
- Gupta M.B., Abu Shehab M., Nygard K. et al. IUGR is associated with marked hyperphosphorylation of decidual and maternal plasma IGFBP-1 // The J. Clin. Endocrinol. and Metabolism. 2019. V. 104. № 2. P. 408–422. https://doi.org/10.1210/jc.2018-00820
- Wang L., Wang X., Laird N. et al. Polymorphism in maternal LRP8 gene is associated with fetal growth // The Am. J. Human Genet. 2006. V. 78. № 5. P. 770–777. https://doi.org/10.1086/503712
- Gremlich S., Nguyen D., Reymondin D. et al. Fetal MMP2/MMP9 polymorphisms and intrauterine growth restriction risk // J. Reproductive Immunol. 2007. V. 74. № 1–2. P. 143–151. https://doi.org/10.1016/j.jri.2007.02.001
- Berends A.L., Bertoli‐Avella A.M., De Groot C.J.M. et al. STOX1 gene in pre‐eclampsia and intrauterine growth restriction // BJOG: An Intern. J. Obstetrics and Gynaecol. 2007. V. 114. № 9. P. 1163–1167. https://doi.org/10.1111/j.1471-0528.2007.01414.x
- Chelbi S.T., Wilson M.L., Veillard A.C. et al. Genetic and epigenetic mechanisms collaborate to control SERPINA3 expression and its association with placental diseases // Human Mol. Genet. 2012. V. 21. № 9. P. 1968–1978. https://doi.org/10.1093/hmg/dds006
- Mandò C, Tabano S., Pileri P. et al. SNAT2 expression and regulation in human growth-restricted placentas // Pediatric Res. 2013. V. 74. № 2. P. 104–110. https://doi.org/10.1038/pr.2013.83
- McMinn J., Wei M., Schupf N. et al. Unbalanced placental expression of imprinted genes in human intrauterine growth restriction // Placenta. 2006. V. 27. № 6–7. P. 540–549. https://doi.org/10.1016/j.placenta.2005.07.004
- Sitras V., Paulssen R., Leirvik J. et al. Placental gene expression profile in intrauterine growth restriction due to placental insufficiency // Reproductive Sci. 2009. V. 16. № 7. P. 701–711. https://doi.org/10.1177/1933719109334256
- Struwe E., Berzl G., Schild R. et al. Microarray analysis of placental tissue in intrauterine growth restriction // Clin. Endocrinology. 2010. V. 72. № 2. P. 241–247. https://doi.org/10.1111/j.1365-2265.2009.03659.x
- Nishizawa H., Ota S., Suzuki M. et al. Comparative gene expression profiling of placentas from patients with severe pre-eclampsia and unexplained fetal growth restriction // Reproductive Biol. and Endocrinol. 2011. V. 9. № 1. P. 1–12. https://doi.org/10.1186/1477-7827-9-107
- Guo L., Tsai S.Q., Hardison N.E. et al. Differentially expressed microRNAs and affected biological pathways revealed by modulated modularity clustering (MMC) analysis of human preeclamptic and IUGR placentas // Placenta. 2013. V. 34. № 7. P. 599–605. https://doi.org/10.1016/j.placenta.2013.04.007
- Sabri A., Lai D., D’silva A. et al. Differential placental gene expression in term pregnancies affected by fetal growth restriction and macrosomia // Fetal Diagnosis and Therapy. 2014. V. 36. № 2. P. 173–180. https://doi.org/10.1159/000360535
- Madeleneau D., Buffat C., Mondon F. et al. Transcriptomic analysis of human placenta in intrauterine growth restriction // Ped. Research. 2015. V. 77. № 6. P. 799–807. https://doi.org/10.1038/pr.2015.40
- Medina-Bastidas D., Guzmán-Huerta M., Borboa-Olivares H. et al. Placental microarray profiling reveals common mRNA and lncRNA expression patterns in preeclampsia and intrauterine growth restriction // Intern. J. Mol. Sciences. 2020. V. 21. № 10. https://doi.org/10.3390/ijms21103597
- Margioula-Siarkou G., Margioula-Siarkou S., Petousis S. et al. The role of endoglin and its soluble form in pathogenesis of preeclampsia // Mol. and Cell. Biochemistry. 2022. V. 477. № 2. P. 479–491. https://doi.org/10.1007/s11010-021-04294-z
- Jeyabalan A., McGonigal S., Gilmour C. et al. Circulating and placental endoglin concentrations in pregnancies complicated by intrauterine growth restriction and preeclampsia // Placenta. 2008. V. 29. № 6. P. 555–563. https://doi.org/10.1016/j.placenta.2008.03.006
- Khidri F.F., Waryah Y.M., Ali F.K. et al. MTHFR and F5 genetic variations have association with preeclampsia in Pakistani patients: A case control study // BMC Med. Genetics. 2019. V. 20. № 1. P. 163. https://doi.org/10.1186/s12881-019-0905-9
- Kujovich J.L. Factor V Leiden thrombophilia // Genetics in Medicine. 2011. V. 13. № 1. P. 1–16. https://doi.org/10.1097/GIM.0b013e3181faa0f2
- Peng X., He D., Peng R. et al. Associations between IGFBP1 gene polymorphisms and the risk of preeclampsia and fetal growth restriction // Hypertension Res. 2023. V. 46. № 9. P. 2070–2084. https://doi.org/10.1038/s41440-023-01309-8
- Tchirikov M., Schlabritz-Loutsevitch N., Maher J. et al. Mid-trimester preterm premature rupture of membranes (PPROM): etiology, diagnosis, classification, international recommendations of treatment options and outcome // J. Perinatal Med. 2018. V. 46. № 5. P. 465–488. https://doi.org/10.1515/jpm-2017-0027
- Dogić L.M., Mićić D., Omeragić F. et al. IGFBP-1 marker of cervical ripening and predictor of preterm birth // Med. Glasnik. 2016. V. 13. № 2. P. 118–124. https://doi.org/10.17392/856-16
- Aisagbonhi O., Bui T., Nasamran C.A. et al. High placental expression of FLT1, LEP, PHYHIP and IL3RA–In persons of African ancestry with severe preeclampsia // Placenta. 2023. V. 144. P. 13–22. https://doi.org/10.1016/j.placenta.2023.10.008
- Chen S., Ke Y., Chen W. et al. Association of the LEP gene with immune infiltration as a diagnostic biomarker in preeclampsia // Frontiers in Mol. Biosciences. 2023. V. 10. https://doi.org/10.3389/fmolb.2023.1209144
- Trifonova E.A., Gabidulina T.V., Ershov N.I. et al. Analysis of the placental tissue transcriptome of normal and preeclampsia complicated pregnancies // Acta Naturae. 2014. V. 6. № 2. P. 71–83.
- Macintire K., Tuohey L., Ye L. et al. PAPPA2 is increased in severe early onset pre-eclampsia and upregulated with hypoxia // Reproduction, Fertility and Development. 2014. V. 26. № 2. P. 351–357. https://doi.org/10.1071/RD12384
- Brosens I., Pijnenborg R., Vercruysse L. et al. The “Great Obstetrical Syndromes” are associated with disorders of deep placentation // Am. J. Obstetrics and Gynecology. 2011. V. 204. № 3. P. 193–201. https://doi.org/10.1016/j.ajog.2010.08.009
- Di Renzo G.C. The great obstetrical syndromes // The J. Maternal-Fetal and Neonatal Med. 2009. Т. 22. № 8. P. 633–635. https://doi.org/10.1080/14767050902866804
- Awamleh Z., Gloor G.B., Han V.K.M. Placental microRNAs in pregnancies with early onset intrauterine growth restriction and preeclampsia: Potential impact on gene expression and pathophysiology // BMC Med. Genomics. 2019. V. 12. № 1. P. 91. https://doi.org/10.1186/s12920-019-0548-x
- Majewska M., Lipka A., Paukszto L. et al. Placenta transcriptome profiling in intrauterine growth restriction (IUGR) // Intern. J. Mol. Sciences. 2019. V. 20. № 6. P. 1510. https://doi.org/10.3390/ijms20061510
- Li W., Chung C.Y.L., Wang C.C. et al. Monochorionic twins with selective fetal growth restriction: Insight from placental whole-transcriptome analysis // Am. J. Obstetrics and Gynecology. 2020. V. 223. № 5. P. 749.e1–749.e16. https://doi.org/10.1016/j.ajog.2020.05.008
- Gong S., Gaccioli F., Dopierala J. et al. The RNA landscape of the human placenta in health and disease // Nat. Communications. 2021. V. 12. № 1. P. 2639. https://doi.org/10.1038/s41467-021-22695-y
- Sood R., Zehnder J.L., Druzin M.L. et al. Gene expression patterns in human placenta // Proc. Nat. Acad. Sci. 2006. V. 103. № 14. P. 5478–5483. https://doi.org/10.1073/pnas.0508035103
- Suryawanshi H., Morozov P., Straus A. et al. A single-cell survey of the human first-trimester placenta and decidua // Sci. Advances. 2018. V. 4. № 10. P. eaau4788. https://doi.org/10.1126/sciadv.aau4788
- Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 // Genome Biology. 2014. V. 15. № 12. P. 1–21. https://doi.org/10.1186/s13059-014-0550-8
- Maglott D., Ostell J., Pruitt K.D. et al. Entrez gene: Gene-centered information at NCBI // Nucl. Acids Res. 2005. V. 35. P. D54–D58. https://doi.org/10.1093/nar/gkl993
- Apweiler R., Bairoch A., Wu C.H. et al. UniProt: The universal protein knowledgebase // Nucl. Acids Res. 2004. V. 32. P. D115–D119. https://doi.org/10.1093/nar/gkw91099
- Dunk C.E., Roggensack A.M., Cox B. et al. A distinct microvascular endothelial gene expression profile in severe IUGR placentas // Placenta. 2012. V. 33. № 4. P. 285–293. https://doi.org/10.1016/j.placenta.2011.12.020
- Kaartokallio T., Cervera A., Kyllönen A. et al. Gene expression profiling of pre-eclamptic placentae by RNA sequencing // Sci. Reports. 2015. V. 5. https://doi.org/10.1038/srep14107
- Nevalainen J., Skarp S., Savolainen E.R. et al. Intrauterine growth restriction and placental gene expression in severe preeclampsia, comparing early-onset and late-onset forms // J. Perinatal Med. 2017. V. 45. № 7. P. 869–877. https://doi.org/10.1515/jpm-2016-0406
- Wang Y., Liu H.Z., Liu Y. et al. Disordered p53‐MALAT1 pathway is associated with recurrent miscarriage // The Kaohsiung J. Med. Sciences. 2019. V. 35. № 2. P. 87–94. https://doi.org/10.1002/kjm2.12013
- Chen H., Meng T., Liu X. et al. Long non-coding RNA MALAT-1 is downregulated in preeclampsia and regulates proliferation, apoptosis, migration and invasion of JEG-3 trophoblast cells // Intern. J. Clin. and Experim. Pathology. 2015. V. 8. № 10. P. 12718.
- Ou M., Zhao H., Ji G. et al. Long noncoding RNA MALAT1 contributes to pregnancy‐induced hypertension development by enhancing oxidative stress and inflammation through the regulation of the miR‐150‐5p/ET‐1 axis // The FASEB J. 2020. V. 34. № 5. P. 6070–6085. https://doi.org/10.1096/fj.201902280r
- Feng C., Cheng L., Jin J. et al. Long non-coding RNA MALAT1 regulates trophoblast functions through VEGF/VEGFR1 signaling pathway // Arch. Gynecology and Obstetrics. 2021. V. 304. № 4. P. 873–882. https://doi.org/10.1007/s00404-021-05987-y
- Wu H.Y., Wang X.H., Liu K. et al. LncRNA MALAT1 regulates trophoblast cells migration and invasion via miR-206/IGF-1 axis // Cell Cycle. 2020. V. 19. № 1. P. 39–52. https://doi.org/10.1080/15384101.2019.1691787
- Shi L., Zhu L., Gu Q. et al. LncRNA MALAT1 promotes decidualization of endometrial stromal cells via sponging MiR‐498‐3p and targeting histone deacetylase 4 // Cell Biology Intern. 2022. V. 46. № 8. P. 1264–1274. https://doi.org/10.1002/cbin.11814
- Yang M., Yang Y., She S. et al. Proteomic investigation of the effects of preimplantation factor on human embryo implantation // Mol. Med. Reports. 2018. V. 17. № 3. P. 3481–3488. https://doi.org/10.3892/mmr.2017.8338
- Lu J., Wu W., Xin Q. et al. Spatiotemporal coordination of trophoblast and allantoic Rbpj signaling directs normal placental morphogenesis // Cell Death and Disease. 2019. V. 10. № 6. P. 438. https://doi.org/10.1038/s41419-019-1683-1
- Robinson J.F., Fisher S.J. Rbpj links uterine transformation and embryo orientation // Cell Research. 2014. V. 24. № 9. P. 1031–1032. https://doi.org/10.1038/cr.2014.110
- Strug M.R., Su R.W., Kim T.H. et al. RBPJ mediates uterine repair in the mouse and is reduced in women with recurrent pregnancy loss //The FASEB J. 2018. V. 32. № 5. P. 2452. https://doi.org/10.1096/fj.201701032r
- Chi L., Ahmed A., Roy A.R. et al. G9a controls placental vascular maturation by activating the Notch Pathway // Development. 2017. V. 144. № 11. P. 1976–1987. https://doi.org/10.1242/dev.148916
- Liao Y., Wang J., Jaehnig E.J. et al. WebGestalt 2019: Gene set analysis toolkit with revamped UIs and APIs // Nucl. Acids Res. 2019. V. 47. № W1. P. W199–W205. https://doi.org/10.1093/nar/gkz401
- Ashburner M., Ball C.A., Blake J.A. et al. Gene ontology: Tool for the unification of biology // Nat. Genetics. 2000. V. 25. № 1. P. 25–29. https://doi.org/10.1038/75556
- Kanehisa M., Goto S. KEGG: Kyoto encyclopedia of genes and genomes // Nucl. Acids Res. 2000. V. 28. № 1. P. 27–30. https://doi.org/10.1093/nar/28.1.27
- Wang W., Sung N., Gilman-Sachs A. et al. T helper (Th) cell profiles in pregnancy and recurrent pregnancy losses: Th1/Th2/Th9/Th17/Th22/Tfh cells // Frontiers in Immunol. 2020. V. 11. https://doi.org/10.3389/fimmu.2020.02025
- Yañez M.J., Leiva A. Human placental intracellular cholesterol transport: A focus on lysosomal and mitochondrial dysfunction and oxidative stress // Antioxidants. 2022. V. 11. № 3. https://doi.org/10.3390/antiox11030500
- Cuffe J.S.M., Holland O., Salomon C. et al. Placental derived biomarkers of pregnancy disorders // Placenta. 2017. V. 54. P. 104–110. https://doi.org/10.1016/j.placenta.2017.01.119
- Kimura C., Watanabe K., Iwasaki A. et al. The severity of hypoxic changes and oxidative DNA damage in the placenta of early-onset preeclamptic women and fetal growth restriction // The J. Maternal-fetal and Neonatal Med. 2013. V. 26. № 5. P. 491–496. https://doi.org/10.3109/14767058.2012.733766
- Racicot K., Mor G. Risks associated with viral infections during pregnancy // The J. Clin. Investigation. 2017. V. 127. № 5. P. 1591–1599. https://doi.org/10.1172/JCI87490
- Mering C., Huynen M., Jaeggi D. et al. STRING: A database of predicted functional associations between proteins // Nucl. Acids Res. 2003. V. 31. № 1. P. 258–261. https://doi.org/10.1093/nar/gkg034
- Zhou G., Soufan O., Ewald J. et al. NetworkAnalyst 3.0: A visual analytics platform for comprehensive gene expression profiling and meta-analysis // Nucl. Acids Res. 2019. V. 47. № W1. P. W234–W241. https://doi.org/10.1093/nar/gkz240
- Fabregat A., Jupe S., Matthews L. et al. The reactome pathway knowledgebase // Nucl. Acids Res. 2018. V. 46. № D1. P. D649–D655. https://doi.org/10.1093/nar/gkx1132
- Tong M., Jun T., Nie Y. et al. The role of the Slit/Robo signaling pathway // J. Cancer. 2019. V. 10. № 12. P. 2694. https://doi.org/10.7150%2Fjca.31877
- Shilei B., Lizi Z., Lijun H. et al. Downregulation of CDC42 inhibits the proliferation and stemness of human trophoblast stem cell via EZRIN/YAP inactivation // Cell and Tissue Res. 2022. V. 389. № 3. P. 573–585. https://doi.org/10.1007/s00441-022-03653-6
- Wu F., Chen X., Liu Y. et al. Decreased MUC1 in endometrium is an independent receptivity marker in recurrent implantation failure during implantation window // Reproductive Biol. and Endocrinol. 2018. Vol. 16. № 1. P. 60. https://doi.org/10.1186/s12958-018-0379-1
- Rossy J., Williamson D.J., Gaus K. How does the kinase Lck phosphorylate the T cell receptor? Spatial organization as a regulatory mechanism // Frontiers in Immunol. 2012. V. 3. P. 167. https://doi.org/10.3389/fimmu.2012.00167
- Campbell T.M., Bryceson Y.T. IL2RB maintains immune harmony // J. Experim. Med. 2019. V. 216. № 6. P. 1231–1233. https://doi.org/10.1084/jem.20190546
- Трифонова Е.А., Гавриленко М.М., Бабовская А.А. и др. Ландшафт альтернативного сплайсинга в децидуальных клетках плаценты при физиологической беременности // Генетика. 2022. Т. 58. № 10. С. 1210–1220. https://doi.org/10.31857/S0016675822100101
- Колчанов Н.А., Игнатьева Е.В., Подколодная О.А. и др. Генные сети // Вавиловский журн. генетики и селекции. 2015. Т. 17. № 4/2. С. 833–850.
补充文件
