Polymorphisms in the transit peptide of phytoene synthase ZmPSY1 link to the white color of grain endosperm in maize inbred lines

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The yellow and orange color of Zea mays L. grain is determined by the presence of carotenoids, the first enzyme of the biosynthesis pathway of which is phytoene synthase PSY. In this study, we analyzed allelic variants of the ZmPSY1 gene in accessions of yellow-grain and white-grain maize inbred lines of domestic selection. In four lines with different grain colors, full-length ZmPSY1 cDNAs were amplified and sequenced, and their variability was characterized. In the cDNA sequence of ZmPSY1 from white-grain lines, nonsynonymous SNPs were found that lead to substitutions of four amino acid residues (L47I, W52S, E53D and A54V) in the N-terminal transit peptide responsible for the plastid localization of the enzyme. A primer system has been developed for PCR identification of the ZmPSY1 allele type in maize accessions. Testing of primers on 44 maize lines showed the presence of the wild-type ZmPSY1 allele and the absence of the mutant allele in the genome of all 22 yellow-grain lines analyzed. The mutant ZmPSY1 allele was detected in the genome of 41% of the 22 tested white-grain lines. The use of the developed primer system may be promising in the selection of corn with altered carotenoid content in the grain endosperm.

Full Text

Restricted Access

About the authors

D. K. Arkhestova

Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences; Institute of Agriculture - branch of the Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences

Author for correspondence.
Email: shchennikova@yandex.ru
Russian Federation, Moscow 119071; Nalchik 360004

A. D. Khaudov

Institute of Agriculture - branch of the Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences

Email: shchennikova@yandex.ru
Russian Federation, Nalchik 360004

A. V. Shchennikova

Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences

Email: shchennikova@yandex.ru
Russian Federation, Moscow 119071

E. Z. Kochieva

Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences; Lomonosov Moscow State University

Email: shchennikova@yandex.ru
Russian Federation, Moscow 119071; Moscow, 119234

References

  1. Chandrasekharan N., Ramanathan N., Pukalenthy B. et al. Development of β-carotene, lysine, and tryptophan-rich maize (Zea mays) inbreds through marker-assisted gene pyramiding // Sci. Rep. 2022. V. 12(1). 8551. doi: 10.1038/s41598-022-11585-y
  2. Singh J., Sharma S., Kaur A. et al. Marker-assisted pyramiding of lycopene-ε-cyclase, β-carotene hydroxylase1 and opaque2 genes for development of biofortified maize hybrids // Sci. Rep. 2021. V. 11(1). 12642. doi: 10.1038/s41598-021-92010-8
  3. Abdel-Rahman M.M., Bayoumi S.R., Barakat M.N. Identification of molecular markers linked to Fusarium ear rot genes in maize plants Zea mays L. // Biotechnology & Biotechnological Equipment. 2016. V. 30(4). P. 692–699. doi: 10.1080/13102818.2016.1181987
  4. Yang D.E., Zhang C.L., Zhang D.S. et al. Genetic analysis and molecular mapping of maize (Zea mays L.) stalk rot resistant gene Rfg1 // Theor. Appl. Genet. 2004. V. 108(4). P. 706–711. doi: 10.1007/s00122-003-1466-y
  5. Filyushin M.A., Kochieva E.Z., Shchennikova A.V. ZmDREB2.9 gene in maize (Zea mays L.): genome-wide identification, characterization, expression, and stress response // Plants (Basel). 2022. V. 11(22). doi: 10.3390/plants11223060
  6. Yu J.K., Moon Y.S. Corn starch: quality and quantity improvement for industrial uses // Plants (Basel). 2021. V. 11(1). doi: 10.3390/plants11010092
  7. Palaisa K.A., Morgante M., Williams M. et al. Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci // Plant Cell. 2003. V. 15(8). P. 1795–1806. doi: 10.1105/tpc.012526
  8. Ranilla L.G., Zolla G., Afaray-Carazas A. et al. Integrated metabolite analysis and health-relevant in vitro functionality of white, red, and orange maize (Zea mays L.) from the Peruvian Andean race Cabanita at different maturity stages // Front. Nutr. 2023. V. 10. doi: 10.3389/fnut.2023.1132228
  9. Burt A.J., Grainger C.M., Smid M.P. et al. Allele mining of exotic maize germplasm to enhance macular carotenoids // Crop Science. 2011. V. 51(3). P. 991–1004. doi: 10.2135/cropsci2010.06.0335
  10. Sierra J., McQuinn R.P., Leon P. The role of carotenoids as a source of retrograde signals: Impact on plant development and stress responses // J. Exp. Bot. 2022. V. 73(21). P. 7139–7154. doi: 10.1093/jxb/erac292
  11. Buckner B., Kelson T.L., Robertson D.S. Cloning of the y1 locus of maize, a gene involved in the biosynthesis of carotenoids // Plant Cell. 1990. V. 2(9). P. 867–876. doi: 10.1105/tpc.2.9.867
  12. Buckner B., Miguel P.S., Janick-Buckner D. et al. The y1 gene of maize codes for phytoene synthase // Genetics. 1996. V. 143(1). P. 479–488. doi: 10.1093/genetics/143.1.479
  13. Egesel C.E.M., Wong J.C., Lambert R.J. et al. Gene dosage effects on carotenoid concentration in maize grain // Maydica. 2003. V. 48(3). P. 183–190.
  14. Филюшин М.А., Джос Е.А., Щенникова А.В. и др. Зависимость окраски плодов перца от соотношения основных пигментов и профиля экспрессии генов биосинтеза каротиноидов и антоцианов // Физиология растений. 2020. Т. 67. C. 644–653. doi: 10.31857/S0015330320050048
  15. Fu Z., Yan J., Zheng Y. et al. Nucleotide diversity and molecular evolution of the PSY1 gene in Zea mays compared to some other grass species // Theor. Appl. Genet. 2010. V. 120(4). P. 709–720. doi: 10.1007/s00122-009-1188-x
  16. Shumskaya M., Bradbury L.M., Monaco R.R. et al. Plastid localization of the key carotenoid enzyme phytoene synthase is altered by isozyme, allelic variation, and activity // Plant Cell. 2012. V. 24. P. 3725–3741. doi: 10.1105/tpc.112.10417
  17. You M.K., Kim J.H., Lee Y.J. et al. Plastoglobule-targeting competence of a putative transit peptide sequence from rice phytoene synthase 2 in plastids // Int. J. Mol. Sci. 2016. V. 18(1). doi: 10.3390/ijms18010018
  18. Zita W., Bressoud S., Glauser G. et al. Chromoplast plastoglobules recruit the carotenoid biosynthetic pathway and contribute to carotenoid accumulation during tomato fruit maturation // PLoS One. 2022. V. 17(12). doi: 10.1371/journal.pone.0277774

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Alignment of the ZmPSY1 cDNA region (a) and the amino acid sequence of ZmPSY1 homologues (b) in two yellow-grained (2452-2, 5580-1) and two white-grained (5254-3, 6097-1) inbred maize lines in comparison with the reference Z. mays var. B73 (LOC100136882; MN128624.1). The arrow indicates the region of the nucleotide sequence selected for the forward primer (for analysis of the allelic variant of the ZmPSY1 gene). In the amino acid sequence, the polymorphic region of the transit peptide containing the substitutions of ao L47I, W52S, E53D and A54V is highlighted in a frame, the SQS and PSY consensuses (solid lines) and the YAKTF and RAYV regions limiting the catalytically active site (double lines) are underlined, and radical substitutions of ao are indicated (arrows).

Download (1MB)
3. Fig. 2. Electrophoresis in 2.5% agarose gel of the products (394 bp) of PCR amplification on genomic DNA of 44 inbred maize lines with primers designed for the wild-type (PSY155R/PSY155FG; top of each gel) and mutant (PSY155R/PSY155FC; bottom of each gel) alleles. a – white-grained lines (1–22). The wild-type ZmPSY1 allele was detected in nine samples, and 13 samples contained the mutant allele; b – yellow-grained lines (23–44). The presence of the wild-type ZmPSY1 allelic variant was shown in all 22 samples. The application of samples corresponds to the ordinal numbers of the lines in Table 1; M – DNA length marker GeneRuler Low Range (first four bands from top to bottom: 700, 500, 400, 300 bp).

Download (300KB)

Copyright (c) 2024 Russian Academy of Sciences