Polymorphisms in the transit peptide of phytoene synthase ZmPSY1 link to the white color of grain endosperm in maize inbred lines
- Authors: Arkhestova D.K.1,2, Khaudov A.D.2, Shchennikova A.V.1, Kochieva E.Z.1,3
-
Affiliations:
- Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences
- Institute of Agriculture - branch of the Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences
- Lomonosov Moscow State University
- Issue: Vol 60, No 9 (2024)
- Pages: 32-40
- Section: ГЕНЕТИКА РАСТЕНИЙ
- URL: https://rjpbr.com/0016-6758/article/view/667198
- DOI: https://doi.org/10.31857/S0016675824090057
- EDN: https://elibrary.ru/aekknk
- ID: 667198
Cite item
Abstract
The yellow and orange color of Zea mays L. grain is determined by the presence of carotenoids, the first enzyme of the biosynthesis pathway of which is phytoene synthase PSY. In this study, we analyzed allelic variants of the ZmPSY1 gene in accessions of yellow-grain and white-grain maize inbred lines of domestic selection. In four lines with different grain colors, full-length ZmPSY1 cDNAs were amplified and sequenced, and their variability was characterized. In the cDNA sequence of ZmPSY1 from white-grain lines, nonsynonymous SNPs were found that lead to substitutions of four amino acid residues (L47I, W52S, E53D and A54V) in the N-terminal transit peptide responsible for the plastid localization of the enzyme. A primer system has been developed for PCR identification of the ZmPSY1 allele type in maize accessions. Testing of primers on 44 maize lines showed the presence of the wild-type ZmPSY1 allele and the absence of the mutant allele in the genome of all 22 yellow-grain lines analyzed. The mutant ZmPSY1 allele was detected in the genome of 41% of the 22 tested white-grain lines. The use of the developed primer system may be promising in the selection of corn with altered carotenoid content in the grain endosperm.
Full Text

About the authors
D. K. Arkhestova
Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences; Institute of Agriculture - branch of the Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences
Author for correspondence.
Email: shchennikova@yandex.ru
Russian Federation, Moscow 119071; Nalchik 360004
A. D. Khaudov
Institute of Agriculture - branch of the Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences
Email: shchennikova@yandex.ru
Russian Federation, Nalchik 360004
A. V. Shchennikova
Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences
Email: shchennikova@yandex.ru
Russian Federation, Moscow 119071
E. Z. Kochieva
Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences; Lomonosov Moscow State University
Email: shchennikova@yandex.ru
Russian Federation, Moscow 119071; Moscow, 119234
References
- Chandrasekharan N., Ramanathan N., Pukalenthy B. et al. Development of β-carotene, lysine, and tryptophan-rich maize (Zea mays) inbreds through marker-assisted gene pyramiding // Sci. Rep. 2022. V. 12(1). 8551. doi: 10.1038/s41598-022-11585-y
- Singh J., Sharma S., Kaur A. et al. Marker-assisted pyramiding of lycopene-ε-cyclase, β-carotene hydroxylase1 and opaque2 genes for development of biofortified maize hybrids // Sci. Rep. 2021. V. 11(1). 12642. doi: 10.1038/s41598-021-92010-8
- Abdel-Rahman M.M., Bayoumi S.R., Barakat M.N. Identification of molecular markers linked to Fusarium ear rot genes in maize plants Zea mays L. // Biotechnology & Biotechnological Equipment. 2016. V. 30(4). P. 692–699. doi: 10.1080/13102818.2016.1181987
- Yang D.E., Zhang C.L., Zhang D.S. et al. Genetic analysis and molecular mapping of maize (Zea mays L.) stalk rot resistant gene Rfg1 // Theor. Appl. Genet. 2004. V. 108(4). P. 706–711. doi: 10.1007/s00122-003-1466-y
- Filyushin M.A., Kochieva E.Z., Shchennikova A.V. ZmDREB2.9 gene in maize (Zea mays L.): genome-wide identification, characterization, expression, and stress response // Plants (Basel). 2022. V. 11(22). doi: 10.3390/plants11223060
- Yu J.K., Moon Y.S. Corn starch: quality and quantity improvement for industrial uses // Plants (Basel). 2021. V. 11(1). doi: 10.3390/plants11010092
- Palaisa K.A., Morgante M., Williams M. et al. Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci // Plant Cell. 2003. V. 15(8). P. 1795–1806. doi: 10.1105/tpc.012526
- Ranilla L.G., Zolla G., Afaray-Carazas A. et al. Integrated metabolite analysis and health-relevant in vitro functionality of white, red, and orange maize (Zea mays L.) from the Peruvian Andean race Cabanita at different maturity stages // Front. Nutr. 2023. V. 10. doi: 10.3389/fnut.2023.1132228
- Burt A.J., Grainger C.M., Smid M.P. et al. Allele mining of exotic maize germplasm to enhance macular carotenoids // Crop Science. 2011. V. 51(3). P. 991–1004. doi: 10.2135/cropsci2010.06.0335
- Sierra J., McQuinn R.P., Leon P. The role of carotenoids as a source of retrograde signals: Impact on plant development and stress responses // J. Exp. Bot. 2022. V. 73(21). P. 7139–7154. doi: 10.1093/jxb/erac292
- Buckner B., Kelson T.L., Robertson D.S. Cloning of the y1 locus of maize, a gene involved in the biosynthesis of carotenoids // Plant Cell. 1990. V. 2(9). P. 867–876. doi: 10.1105/tpc.2.9.867
- Buckner B., Miguel P.S., Janick-Buckner D. et al. The y1 gene of maize codes for phytoene synthase // Genetics. 1996. V. 143(1). P. 479–488. doi: 10.1093/genetics/143.1.479
- Egesel C.E.M., Wong J.C., Lambert R.J. et al. Gene dosage effects on carotenoid concentration in maize grain // Maydica. 2003. V. 48(3). P. 183–190.
- Филюшин М.А., Джос Е.А., Щенникова А.В. и др. Зависимость окраски плодов перца от соотношения основных пигментов и профиля экспрессии генов биосинтеза каротиноидов и антоцианов // Физиология растений. 2020. Т. 67. C. 644–653. doi: 10.31857/S0015330320050048
- Fu Z., Yan J., Zheng Y. et al. Nucleotide diversity and molecular evolution of the PSY1 gene in Zea mays compared to some other grass species // Theor. Appl. Genet. 2010. V. 120(4). P. 709–720. doi: 10.1007/s00122-009-1188-x
- Shumskaya M., Bradbury L.M., Monaco R.R. et al. Plastid localization of the key carotenoid enzyme phytoene synthase is altered by isozyme, allelic variation, and activity // Plant Cell. 2012. V. 24. P. 3725–3741. doi: 10.1105/tpc.112.10417
- You M.K., Kim J.H., Lee Y.J. et al. Plastoglobule-targeting competence of a putative transit peptide sequence from rice phytoene synthase 2 in plastids // Int. J. Mol. Sci. 2016. V. 18(1). doi: 10.3390/ijms18010018
- Zita W., Bressoud S., Glauser G. et al. Chromoplast plastoglobules recruit the carotenoid biosynthetic pathway and contribute to carotenoid accumulation during tomato fruit maturation // PLoS One. 2022. V. 17(12). doi: 10.1371/journal.pone.0277774
Supplementary files
