Novel ToxA Insertion Element in Pyrenophora tritici-repentis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Pyrenophora tritici-repentis is the causative agent of tan spot in wheat. Among the necrotrophic effectors produced by the fungus, the most studied is the necrosis-inducing protein toxin Ptr ToxA, encoded by the ToxA gene. Previously, we identified 10 strains of P. tritici-repentis from Kazakhstan and Russia, the amplified fragment of which with ToxA-specific primers turned out to be larger than expected. Sequencing of these fragments of three P. tritici-repentis strains revealed the presence of a 170 bp insertion element PtrHp2 located in exon 2 of the ToxA gene. The PtrHp2 sequence includes three pairs of mutually complementary regions of 16, 8 and 6 bp in length, forming a hairpin-type secondary structure. The inability of P. tritici-repentis strains possessing PtrHp2 in the ToxA gene to cause necrosis on the leaves of cv. Glenlea, which differentiates the presence of Ptr ToxA in the pathogen has been established. This fact indicates a violation of the expression of the mutant ToxA gene. However, the mutant ToxA gene with PtrHp2 is retained in 45% of the fungal mitotic progeny. The fragments homologous to the PtrHp2 are found in non-coding parts of ToxB gene and its homologues in P. tritici-repentis strains, as well as in the genomes of other fungi. This observation indicates the transposon nature of PtrHp2.

Full Text

Restricted Access

About the authors

N. V. Mironenko

All-Russian Research Institute of Plant Protection

Author for correspondence.
Email: nina2601mir@mail.ru
Russian Federation, St. Petersburg, Pushkin, 196608

A. S. Orina

All-Russian Research Institute of Plant Protection

Email: nina2601mir@mail.ru
Russian Federation, St. Petersburg, Pushkin, 196608

N. M. Kovalenko

All-Russian Research Institute of Plant Protection

Email: nina2601mir@mail.ru
Russian Federation, St. Petersburg, Pushkin, 196608

References

  1. Rees R.G., Platz G.J., Mayer R.J. Yield losses in wheat from yellow spot: Comparison of estimates derived from single tillers and plots // Aust. J. Agric. Res. 1982. V. 33. P. 899–908. https://doi.org/10.1071/AR9820899
  2. Bhathal J., Loughman R., Speijers J. Yield reduction in wheat in relation to leaf disease from yellow (tan) spot and Septoria nodorum blotch // Eur. J. Plant Pathol. 2003. V. 109. P. 435–443. https://doi.org/10.1023/A:1024277420773
  3. Adhikari T.B., Bai J., Meinhardt S.W. et al. Tsn1-mediated host responses to ToxA from Pyrenophora tritici-repentis // Mol. Plant Microbe Interact. 2009. V. 22. № 9. P. 1056–1068. https://doi.org/10.1094/MPMI-22-9-1056
  4. Tan K.C., Ferguson-Hunt M., Rybak K. et al. Quantitative variation in effector activity of ToxA isoforms from Stagonospora nodorum and Pyrenophora tritici-repentis // Mol. Plant Microbe Interact. 2012. V. 25. P. 515–522. https://doi.org/10.1094/MPMI-10-11-0273
  5. Friesen T.L., Stukenbrock E.H., Liu Z. et al. Emergence of a new disease as a result of interspecific virulence gene transfer // Nat. Genet. 2006. V. 38. P. 953–956. https://doi.org/10.1038/ng1839
  6. Faris J.D., Liu Z., Xu S.S. Genetics of tan spot resistance in wheat // Theor. Appl. Genet. 2013. V. 126. P. 2197–2217. https://doi.org/10.1007/s00122-013-2157-y
  7. Stukenbrock E.H., McDonald B.A. Geographical variation and positive diversifying selection in the host specific toxin Sn ToxA // Mol. Plant Pathol. 2007. V. 8. P. 321–332. https://doi.org/10.1111/j.1364-3703.2007.00396.x
  8. Мироненко Н.В., Баранова О.А., Коваленко Н.М., Михайлова Л.А. Частота гена ToxA в популяциях Pyrenophora tritici-repentis на Северном Кавказе и северо-западе России // Микология и фитопатология. 2015. Т. 49. № 5. С. 325–329.
  9. Aboukhaddour R., Hafez M., McDonald M. et al. A revised nomenclature for ToxA haplotypes across multiple fungal species // Phytopathology. 2023. V. 113. № 7. P. 1180–1184. https://doi.org/10.1094/PHYTO-01-23-0017-SC
  10. Hafez M., Despins T., Nakajima K., Aboukhaddour R. Identification of a novel ToxA haplotype of Pyrenophora tritici-repentis from Japan // Phytopathology. 2022. V. 112. P. 1597–1602. https://doi.org/10.1094/PHYTO-01-22-0001-SC
  11. Мироненко Н.В., Баранова О.А., Коваленко Н.М. Характеристика географически отдаленных популяций Pyrenophora tritici-repentis по вирулентности и генам токсинообразования ToxA и ToxB // Вестн. защиты растений. 2019. № 1. С. 24–29. https://doi.org/10.31993/2308-6459-2019-1(99)-24-29
  12. Мироненко Н.В., Орина А.С., Коваленко Н.М., Зубко Н.Г. Расовый состав и изменчивость гена ToxA в географически отдаленных популяциях Pyrenophora tritici-repentis // Микология и фитопатология. 2024. Т. 58. № 3. С. 246–253. https://doi.org/10.31857/S0026364824030064
  13. Михайлова Л.А., Гультяева Е.И., Кокорина Н.М. Лабораторные методы культивирования возбудителя желтой пятнистости пшеницы Pyrenophora tritici-repentis // Микология и фитопатология. 2002. Т. 36. № 1. С. 63–67.
  14. Murray H.G., Thompson W.F. Rapid isolation of high molecular weight DNA // Nucl. Acids Res. 1980. V. 8. P. 4321–4325. https://doi.org/10.1093/nar/8.19.4321
  15. Andrie R.M., Pandelova I., Ciuffetti L.M. A combination of phenotypic and genotypic characterization strengthens Pyrenophora tritici-repentis race identification // Phytopathology. 2007. V. 97. P. 694–701. https://doi.org/10.1094/PHYTO-97-6-0694
  16. Boom R., Sol C.J., Salimans M.M. et al. Rapid and simple method for purification of nucleic acids // J. Clin. Microbiol. 1990. V. 28. P. 495–503. https://doi.org/10.1128/jcm.28.3.495-503.1990
  17. Waterhouse A.M., Procter J.B., Martin D.M.A. et al. Jalview Version 2 – a multiple sequence alignment editor and analysis workbench // Bioinformatic. 2009. V. 25. P. 1189–1191. https://doi.org/10.1093/bioinformatics/btp033
  18. Reuter J.S., Mathews D.H. RNAstructure: Software for RNA secondary structure prediction and analysis // BMC Bioinformatic. 2010. V. 11. https://doi.org/10.1186/1471-2105-11-129
  19. Lamari L., Gilbert J., Tekauz A. Race differentiation in Pyrenophora tritici-repentis and survey of physiologic variation in western Canada // Can. J. Plant Pathol. 1998. V. 20. P. 396–400. https://doi.org/10.1080/07060669809500410
  20. Lamari L., Strelkov S.E. The wheat – Pyrenophora tritici-repentis interaction: Progress towards an understanding of tan spot disease // Can. J. Plant Pathol. 2010. V. 32. P. 4–10. https://doi.org/10.1080/07060661003594117
  21. Михайлова Л.А., Мироненко Н.В., Коваленко Н.М. Популяции Pyrenophora tritici-repentis на Северном Кавказе и Северо-Западе России: расовый состав и динамика вирулентности // Микология и фитопатология. 2014. Т. 48. Вып. 6. С. 393–400.
  22. Афанасенко О.С., Новожилов К.В. Проблемы рационального использования генетических ресурсов устойчивости растений к болезням // Экол. генетика. 2009. Т. 7. № 2. С. 38–42. https://doi. Org/10.17816/ecogen7238-43
  23. Lepoint P., Renard M.E., Legreve A. et al. Genetic diversity of the mating type and toxin production genes in Pyrenophora tritici-repentis // Phytopathology. 2010. V. 100. P. 474–483. https://doi.org/10.1094/PHYTO-100-5-0474
  24. Moolhuijzen P.M., See P.T., Oliver R.P., Moffat C.S. Genomic distribution of a novel Pyrenophora tritici-repentis ToxA insertion element // PLoS One. 2018. V. 13. https://doi.org/10.1371/journal.pone.0206586
  25. Chang S.S., Zhang Z., Liu Y. RNA interference pathways in fungi: mechanisms and functions // Annu. Rev. Microbiol. 2012. V. 66. P. 305–323. https://doi.org/10.1146/annurev-micro-092611-150138
  26. Martinez J.P., Oesch N.W., Ciuffetti L.M. Characterization of the multiple-copy host-selective toxin gene, ToxB, in pathogenic and nonpathogenic isolates of Pyrenophora tritici-repentis // Mol. Plant-Microbe Interact. 2004. V. 17. P. 467–474. https://doi.org/10.1094/MPMI.2004.17.5.467.
  27. Wyatt N.A., Friesen T.L. Four reference quality genome assemblies of Pyrenophora teres f. maculata: A resource for studying the barley spot form net blotch interaction // Mol. Plant Microbe Interact. 2021. V. 34. P. 135–139. https://doi.org/10.1094/MPMI-08-20-0228-A
  28. McDonald M.C., Taranto A.P., Hill E. et al. Transposon-mediated horizontal transfer of the host-specific virulence protein ToxA between three fungal wheat pathogens // mBio. 2019. V. 10. https://doi.org/10.1128/mBio.01515-19
  29. Gourlie R., McDonald M., Hafez M. et al. The pangenome of the wheat pathogen Pyrenophora tritici-repentis reveals novel transposons associated with necrotrophic effectors ToxA and ToxB // BMC Biol. 2022. V. 20. Art. 239. https://doi.org/10.1186/s12915-022-01433-w
  30. Gluck-Thaler E., Vogan A.A., Branco S. Giant mobile elements: Agents of multivariate phenotypic evolution in fungi // Cur. Biol. 2022. V. 32. № 5. P. R234–R236. https://doi.org/10.1016/j.cub.2022.01.020
  31. Urquhart A.S., Vogan A.A., Gardiner D.M., Idnurm A. Starships are active eukaryotic transposable elements mobilized by a new family of tyrosine recombinases // Proc. Natl Acad. Sci. USA. 2023. V. 120. https://doi.org/10.1073/pnas.2214521120
  32. Мироненко Н.В., Орина А.С., Коваленко Н.М. Генетический полиморфизм ядер штаммов Pyrenophora tritici-repentis по генам-эффекторам ToxA и ToxB // Генетика. 2021. T. 57. № 5. C. 528–535. https://doi.org/10.31857/S0016675821040093 (Mironenko N.V., Orina A.S., Kovalenko N.M. Nuclear genetic polymorphism in Pyrenophora tritici-repentic strains for ToxA and ToxB effector genes // Rus. J. Genetics. 2021. V. 57. P. 533–539. https://doi.org/10.1134/S1022795421040098)

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Electrophoresis of the amplification products of the ToxA gene fragment of P. tritici-repentis strains with specific primers. M – fragment length marker GeneRuler 100 bp; 1, 2 – negative control; 3 – strain Kaz20-C-12; 4 – Kaz22-C-A-53, 7 – Kaz22-C-A-64, 5, 6 and 8 – P. tritici-repentis strains from the Kaz22-C population.

Download (95KB)
3. Fig. 2. Alignment of nucleotide sequences of the ToxA gene fragment of the studied and reference strains of P. tritici-repentis. The 170 bp PtrHp2 insertion element is highlighted in red, and the 8 bp repeating motif is highlighted in black.

Download (388KB)
4. Fig. 3. Secondary structure of the PtrHp2 insertion element in the ToxA gene of the fungus P. tritici-repentis.

Download (105KB)

Copyright (c) 2024 Russian Academy of Sciences