Molecular Domestication of TLEWI DNA Transposons: Evidence and Contradictions
- Авторлар: Puzakov M.V.1, Puzakova L.V.1, Ulupova Y.N.1
-
Мекемелер:
- Kovalevsky Institute of Biology of the Southern Seas, Russian Akademy of Sciences
- Шығарылым: Том 60, № 11 (2024)
- Беттер: 21-34
- Бөлім: МОЛЕКУЛЯРНАЯ ГЕНЕТИКА
- URL: https://rjpbr.com/0016-6758/article/view/667161
- DOI: https://doi.org/10.31857/S0016675824110026
- EDN: https://elibrary.ru/wbqmjm
- ID: 667161
Дәйексөз келтіру
Аннотация
Transposable elements (TE) are found in the genomes of almost all eukaryotes. They have a characteristic structure that ensures their transposition activity, as a result of which TE can make changes in the structure and functioning of the genome. Through coevolution with the genome, TE sequences can be domesticated. “Molecular domestication” refers to the co-optation of TE sequence, resulting in it becoming a functional part of the host genome. In bivalves, DNA transposons of the TLEWI subfamily have been identified, which have signs of domestication, as well as spliceosomal introns, which makes them similar to eukaryotic genes. To test the domestication hypothesis, this work carried out an intraspecific analysis of the presence of TLEWI transposons in the Pacific oyster (Crassostrea gigas) and their transcriptional activity in various tissues, during ontogeny and under the influence of internal and external factors. As a result, intraspecific heterogeneity was revealed in the presence of potentially functional copies and expression of transposase genes. For example, for two elements, a dependence of transcriptional activity on the stages of ontogenesis, as well as on temperature, was revealed. This suggests that functional (possibly domesticated) alleles have been conserved in distinct populations of the Pacific oyster. The accumulation of additional data will allow us to discover populations that retain active TLEWI transposase genes and to determine whether these genes have been domesticated by genome.
Толық мәтін

Авторлар туралы
M. Puzakov
Kovalevsky Institute of Biology of the Southern Seas, Russian Akademy of Sciences
Хат алмасуға жауапты Автор.
Email: puzakov.mikh@yandex.ru
Ресей, Sevastopol, 299011
L. Puzakova
Kovalevsky Institute of Biology of the Southern Seas, Russian Akademy of Sciences
Email: puzakov.mikh@yandex.ru
Ресей, Sevastopol, 299011
Y. Ulupova
Kovalevsky Institute of Biology of the Southern Seas, Russian Akademy of Sciences
Email: puzakov.mikh@yandex.ru
Ресей, Sevastopol, 299011
Әдебиет тізімі
- Bourque G., Burns K. H., Gehring M. et al. Ten things you should know about transposable elements // Genome Biology. 2018. V. 19. № 1. P. 199. doi: 10.1186/s13059-018-1577-z
- Kojima K.K. Structural and sequence diversity of eukaryotic transposable elements // Genes Genet. Syst. 2020. V. 94. P. 233–252. doi: 10.1266/ggs.18-00024
- Wells J.N., Feschotte C. A field guide to eukaryotic transposable elements // Annu. Rev. Genet. 2020. V. 23. № 54. P. 539–561. doi: 10.1146/annurev-genet-040620-022145
- Wallau G.L., Ortiz M.F., Loreto E.L. Horizontal transposon transfer in eukarya: Detection, bias, and perspectives // Genome Biol. Evol. 2012. V. 4. № 8. P. 689–699. doi: 10.1093/gbe/evs055
- Casacuberta E., González J. The impact of transposable elements in environmental adaptation // Mol. Ecol. 2013. V. 22. № 6. P. 1503–1517. doi: 10.1111/mec.12170
- Piacentini L., Fanti L., Specchia V. et al. Transposons, environmental changes, and heritable induced phenotypic variability // Chromosoma. 2014. V. 123. № 4. P. 345–354. doi: 10.1007/s00412-014-0464-y
- Auvinet J., Graça P., Belkadi L. et al. Mobilization of retrotransposons as a cause of chromosomal diversification and rapid speciation: The case for the Antarctic teleost genus Trematomus // BMC Genomics. 2018. V. 19. № 1. P. 339. doi: 10.1186/s12864-018-4714-x
- Jangam D., Feschotte C., Betrán E. Transposable element domestication as an adaptation to evolutionary conflicts // Trends Genet. 2017. V. 33. № 11. P. 817–831. doi: 10.1016/j.tig.2017.07.011
- Bowen N.J., Jordan I.K. Exaptation of protein coding sequences from transposable elements // Genome Dyn. 2007. V. 3. P. 147–162. doi: 10.1159/000107609
- Feschotte C., Pritham E. J. DNA transposons and the evolution of eukaryotic genomes // Annu. Rev. Genet. 2007. V. 41. P. 331–368. doi: 10.1146/annurev.genet.40.110405.090448
- Sinzelle L., Izsvák Z., Ivics Z. Molecular domestication of transposable elements: From detrimental parasites to useful host genes // Cell. Mol. Life Sci. 2009. V. 66 № 6. P. 1073–1093. doi: 10.1007/s00018-009-8376-3
- Kapitonov V.V., Jurka J. RAG1 core and V(D)J recombination signal sequences were derived from Transib transposons // PLoS Biol. 2005. V. 3. № 6. doi: 10.1371/journal.pbio.0030181
- Panchin Y., Moroz L.L. Molluscan mobile elements similar to the vertebrate Recombination-Activating Genes // Biochem. Biophys. Res. Commun. 2008. V. 369. № 3. P. 818-823. doi: 10.1016/j.bbrc.2008.02.097
- Kim H.S, Chen Q., Kim S.K. et al. The DDN catalytic motif is required for Metnase functions in non-homologous end joining (NHEJ) repair and replication restart // J. Biol. Chem. 2014. V. 289. № 15. P. 10930–10938. doi: 10.1074/jbc.M113.533216
- Mateo L., González J. Pogo-like transposases have been repeatedly domesticated into CENP-B-related proteins // Genome Biol. Evol. 2014. V. 6. № 8. P. 2008–2016. doi: 10.1093/gbe/evu153
- Puzakov M.V., Puzakova L.V., Cheresiz S.V. The Tc1-like elements with the spliceosomal introns in mollusk genomes // Mol. Genet. and Genomics. 2020. V. 295. № 3. P. 621–633. doi: 10.1007/s00438-020-01645-1
- Altschul S.F., Madden T.L, Schäffer A.A. et al. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs // Nucl. Ac. Res. 1997. V. 25. № 17. doi: 10.1093/nar/25.17.3389
- Yamada K.D, Tomii K., Katoh K. Application of the MAFFT sequence alignment program to large data-reexamination of the usefulness of chained guide trees // Bioinformatics. 2016. V. 32. № 21. P. 3246–3251. doi: 10.1093/bioinformatics/btw412
- Nguyen L.T, Schmidt H.A, von Haeseler A., Minh B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies // Mol. Biol. Evol. 2015. V. 32. № 1. P. 268–274. doi: 10.1093/molbev/msu300
- Hoang D.T., Chernomor O., von Haeseler A. et al. UFBoot2: Improving the ultrafast bootstrap approximation // Mol. Biol. Evol. 2018. V. 35. № 2. P. 518–522. doi: 10.1093/molbev/msx281
- Kalyaanamoorthy S., Minh B.Q., Wong T.K.F. et al. ModelFinder: Fast model selection for accurate phylogenetic estimates // Nat. Methods. 2017. V. 14. № 6. P. 587–589. doi: 10.1038/nmeth.4285
- Bray N.L, Pimentel H., Melsted P., Pachter L. Near-optimal probabilistic RNA- seq quantification // Nat. Biotechnol. 2016. V. 34. № 5. P. 525–527. doi: 10.1038/nbt.3519
- Schaack S., Gilbert C., Feschotte C. Promiscuous DNA: horizontal transfer of transposable elements and why it matters for eukaryotic evolution // Trends Ecol. Evol. 2010. V. 25. № 9. P. 537–546. doi: 10.1016/j.tree.2010.06.001
- Blumenstiel J.P. Birth, school, work, death, and resurrection: The life stages and dynamics of transposable element proliferation // Genes (Basel). 2019. V. 10. № 5. P. 336. doi: 10.3390/genes10050336
- Puzakov M.V, Puzakova L.V, Cheresiz S.V. An analysis of IS630/Tc1/mariner transposons in the genome of a Pacific oyster, Crassostrea gigas // J. Mol. Evol. 2018. V. 86. P. 566–580. doi: 10.1007/s00239-018-9868-2
- Чересиз С.В., Юрченко Н.Н., Иванников А.В., Захаров И.К. Мобильные элементы и стресс // Информ. вестник ВОГиС. 2008. Т. 12. №. 1–2. С. 217–242.
- Юрченко Н.Н., Коваленко Л.В., Захаров И.К. Мобильные генетические элементы: нестабильность генов и геномов // Вавил. журн. генет. и селекции. 2011. Т. 15. №. 2. С. 261–270.
- Piacentini L, Fanti L, Specchia V. et al. Transposons, environmental changes, and heritable induced phenotypic variability // Chromosoma. 2014. V. 123. P. 345–354. doi: 10.1007/s00412-014-0464-y
- Grow E.J., Flynn R.A., Chavez S.L. et al. Intrinsic retroviral reactivation in human preimplantation embryos and pluripotent cells // Nature. 2015. V. 522. P. 221–225. doi: 10.1038/nature14308
- Grundy E.E., Diab N., Chiappinelli K.B. Transposable element regulation and expression in cancer // FEBS J. 2022 V. 289. P. 1160–1179. doi: 10.1111/febs.15722
- Schwarz R., Koch P., Wilbrandt J., Hoffmann S. Locus-specific expression analysis of transposable elements // Brief Bioinform. 2022. V. 23. doi: 10.1093/bib/bbab417
Қосымша файлдар
