Search for ethnospecific risk markers for the development of paranoid schizophrenia in bashkirs based on the results of a genome-wide association analysis
- Авторлар: Gareeva A.E.1,2,3
-
Мекемелер:
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences
- Kemerovo State University
- Russian Medical Academy of Continuing Professional Education of the Ministry of Health of Russia
- Шығарылым: Том 60, № 2 (2024)
- Беттер: 94-99
- Бөлім: КРАТКИЕ СООБЩЕНИЯ
- URL: https://rjpbr.com/0016-6758/article/view/666998
- DOI: https://doi.org/10.31857/S0016675824020103
- EDN: https://elibrary.ru/DQNDHI
- ID: 666998
Дәйексөз келтіру
Аннотация
Schizophrenia is now known to be a multifactorial disease in which both genetic and environmental factors play a role. In recent years, mainly through the use of genome-wide association studies (GWAS), many molecular genetic processes have been identified that increase susceptibility to schizophrenia. The aim of this study was to study genetic risk factors for the development of schizophrenia in a genome-wide association analysis (GWAS) in Bashkirs from the Republic of Bashkortostan. The studied sample consisted of 139 patients with paranoid schizophrenia and 204 healthy individuals. Whole genome genotyping of DNA samples was carried out on the PsychChip biochip, which included 610,000 single nucleotide polymorphic variants (SNPs).
Толық мәтін

Авторлар туралы
A. Gareeva
Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences; Kemerovo State University; Russian Medical Academy of Continuing Professional Education of the Ministry of Health of Russia
Хат алмасуға жауапты Автор.
Email: annagareeva@yandex.ru
Ресей, Ufa, 450054; Kemerovo, 650000; Moscow, 125993
Әдебиет тізімі
- Wang J., Liu J., Li S.et al. Genetic regulatory and biological implications of the 10q24.32 schizophrenia risk locus // Brain. 2023. V. 146. № 4. P.1403‒1419. https://doi.org/10.1093/brain/awac352
- Dennison C.A., Legge S.E., Pardiñas A.F., Walters J. Genome-wide association studies in schizophrenia: Recent advances, challenges and future perspective // Schizophr. Res. 2020. V. 217. P. 4‒12. https://doi.org/10.1016/j.schres.2019.10.048
- O’Donovan M.C., Craddock N., Norton N. et al. Molecular genetics of schizophrenia collaboration. identification of loci associated with schizophrenia by genome-wide association and follow-up // Nat. Genet. 2008. V. 40. № 9. P. 1053‒1055. https://doi.org/10.1038/ng.201. PMID: 18677311
- Ripke S., Neale B.M., Corvin A. et al. Biological insights from 108 schizophrenia-associated genetic loci // Nature. 2014. V. 511. № 7510. P. 421‒427. https://doi.org/10.1038/nature13595
- Lam M., Chen C.Y., Li Z. et al. Comparative genetic architectures of schizophrenia in East Asian and European populations // Nat. Genet. 2019. V. 51. № 12. P. 1670‒1678. https://doi.org/10.1038/s41588-019-0512-x
- Trubetskoy V., Pardiñas A.F., Qi T. et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia // Nature. 2022 V. 604. № 7906. P. 502‒508. https://doi.org/10.1038/s41586-022-04434-5
- Purcell S., Neale B., Todd-Brown K. et al. PLINK: A toolset for whole-genome association and population-based linkage analysis // Am. J. Hum. Genet. 2007. V. 81. № 3. P. 559‒575. https://doi.org/10.1086/519795
- Гареева А.Э. Полногеномное ассоциативное исследование риска развития шизофрении в Республике Башкортостан // Генетика. 2023. Т. 59. № 8. С. 954‒963. https://doi.org/10.31857/S0016675823080076
- Benjamini Y., Drai D., Elmer G., Kafkafi N., Golani I. Controlling the false discovery rate in behavior genetics research // Behav. Brain Res. 2001. V. 125. № 1-2. P. 279‒284. https://doi.org/10.1016/s0166-4328(01)00297-2
- Abecasis G.R., Burt R.A., Hall D. et al. Genomewide scan in families with schizophrenia from the founder population of Afrikaners reveals evidence for linkage and uniparental disomy on chromosome 1 // Am. J. Hum. Genet. 2004. V. 74. № 3. P. 403‒417. https://doi.org/10.1086/381713
- Escamilla M.A., Ontiveros A., Nicolini H. et al. A genome-wide scan for schizophrenia and psychosis susceptibility loci in families of Mexican and Central American ancestry // Am. J. Med. Genet. 2007.V. 144B. № 2. P. 193‒199. https://doi.org/10.1002/ajmg.b.30411
- Greenwood T.A., Swerdlow N.R., Gur R.E. et al. Genome-wide linkage analyses of 12 endophenotypes for schizophrenia from the Consortium on the Genetics of Schizophrenia// Am. J. Psychiatry. 2013. V. 170. № 5. P. 521‒532. https://doi.org/10.1176/appi.ajp.2012.12020186
- Greenwood T.A., Lazzeroni L.C., Calkins M.E. et al. Genetic assessment of additional endophenotypes from the Consortium on the Genetics of Schizophrenia Family Study // Schizophr. Res. 2016. V. 170. № 1. P. 30‒40. https://doi.org/10.1016/j.schres.2015.11.008
- Wang L., Chen H., Tang J. et al. Peptidylarginine deiminase and Alzheimer’s disease // J. Alzheimers Dis. 2022. V. 85. № 2. P. 473‒484. https://doi.org/10.3233/JAD-215302
- Bradford C.M., Ramos I., Cross A.K. et al. Localisation of citrullinated proteins in normal appearing white matter and lesions in the central nervous system in multiple sclerosis // J. Neuroimmunol. 2014. V. 273. № 1-2. P. 85‒95. https://doi.org/10.1016/j.jneuroim.2014.05.007
- Watanabe Y., Nunokawa A., Kaneko N. et al. A two-stage case-control association study of PADI2 with schizophrenia // J. Hum. Genet. 2009. V. 54. № 7. P. 430‒432. https://doi.org/10.1038/jhg.2009.52
- Falcão A.M., Meijer M., Scaglione A. et al. PAD2-Mediated citrullination contributes to efficient oligodendrocyte differentiation and myelination // Cell Rep. 2019. V. 27. № 4. P. 1090‒1102. https://doi.org/10.1016/j.celrep.2019.03.108
Қосымша файлдар
