Mutation rate estimates for Y chromosomal STRs in the Yakut population

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The fine structure of the Y chromosome haplogroup N3a2-M1982 has been described, based on complete sequencing data of 23 men, indigenous residents of Yakutia, taking into account both SNP and STR mutations. The rate of mutation of STR markers of the Y chromosome in the Yakut population was calibrated using radiocarbon dating of a sample of a medieval man, Yana Young, found in the lower reaches of the Yana River in Yakutia. Our estimates of the mutation intensity constant of STR loci in 23 marker haplotypes of the N3a2-M1991 branch using 3 different calculation options (0.0032, 0.0024, 0.0032) turned out to be slightly lower than the global average value according to YHRD data (0.0033), and higher than the average over frequently used for STR loci a “genealogical” mutation rate (0.0021), but within the confidence interval do not contradict modern ideas about STR mutations rate of the Y chromosome.

Full Text

Restricted Access

About the authors

D. S. Adamov

Ammosov North-Eastern Federal University

Author for correspondence.
Email: sardaanafedorova@mail.ru
Russian Federation, Yakutsk, 677013

S. A. Fedorova

Ammosov North-Eastern Federal University

Email: sardaanafedorova@mail.ru
Russian Federation, Yakutsk, 677013

References

  1. Fedorova S.A., Reidla M., Metspalu E. et al. Autosomal and uniparental portraits of the native populations of Sakha (Yakutia): Implications for the peopling of Northeast Eurasia // BMC Evol. Biology. 2013. V. 13. https://doi.org/10.1186/1471-2148-13-127
  2. Ilumäe A.M., Reidla M., Chukhryaeva M. et al. Human Y chromosome haplogroup N: A non-trivial time-resolved phylogeography that cuts across language families // Am. J. Hum. Genet. 2016, V. 99. P. 163–173. https://doi.org/10.1016/j.ajhg.2016.05.025
  3. Федорова С.А., Хуснутдинова Э.К. Особенности структуры генофонда и генетическая история саха (якутов) // Генетика. 2022. Т. 58. № 12. С. 1349–1366. https://doi.org/10.1134/S1022795422120031
  4. Адамов Д.С. Якутская ветвь игрек-хромосомы в составе гаплогруппы N-M2016 // Сибирские исследования. 2022. Т. 2. № 8. С. 6–14. http://doi.org/10.33384/26587270.2022.08.02.01r
  5. Bergström A., McCarthy S., Hui R. et al. Insights into human genetic variation and population history from 929 diverse genomes // Science. 2020. V. 367(6484). https://doi.org/10.1126/science.aay5012
  6. Wong E., Khrunin A., Nichols L. et al. Reconstructing genetic history of Siberian and Northeastern European populations // Genome Res. 2015. V. 27. № 1. P. 1–14. https://doi.org/10.1101/gr.202945.115
  7. Karmin M., Saag L., Vicente M. et al. A recent bottleneck of Y chromosome diversity coincides with a global change in culture // Genome Res. 2015. V. 25. P. 459–466. https://doi.org/10.1101/gr.186684.114
  8. Sikora M., Pitulko V., Sousa V. et al. The population history of Northeastern Siberia since the Pleistocene // Nature. 2019. V. 570 (7760). P. 182–188. https://doi.org/10.1038/s41586-019-1279-z
  9. Федорова С.А., Попова С.А., Мордосова М.Л., Старостина М.И. Длина поколения в якутской популяции в XVIII–XIX вв. // Якутский мед. журнал. 2023. Т. 3 (83). С. 21–24. https://doi.org/10.25789/YMJ.2023.83.05
  10. Zvénigorosky V., Duchesne S., Romanova L. et al. The genetic legacy of legendary and historical Siberian chieftains // Communication Biology. 2020. V. 3(1). P. 581. https://doi.org/10.1038/s42003-020-01307-3
  11. Shi W., Ayub Q., Vermeulen M. et al. A worldwide survey of human male demographic history based on Y-SNP and Y-STR data from the HGDP-CEPH populations // Mol. Biol. Evol. 2010. V. 27. № 2. P. 385–393. https://doi.org/10.1093/molbev/msp243
  12. Gao T., Yun L., Gu Y. et al. Phylogenetic analysis and forensic characteristics of 12 populations using 23 Y-STR loci // Forensic Sci. Int. Genet. 2015. V. 19. P. 130–133. https://doi.org/10.1016/j.fsigen.2015.07.006
  13. Davis C., Ge J., Chidambaram A. et al. Y-STR loci diversity in native Alaskan populations // Int. J. Legal Med. 2011. V. 125. № 4. P. 559–563. https://doi.org/10.1007/s00414-011-0568-3
  14. Zvénigorosky V., Crubézy E., Gibert M. et al. The genetics of kinship in remote human groups // Forensic Sci. Int. Genet. 2016. V. 25. P. 52–62. https://doi.org/10.1016/j.fsigen.2016.07.018
  15. Балановский О.П., Запорожченко В.В. Хромосома-летописец: датировки генетики, события истории, соблазн ДНК-генеалогии January // Генетика. 2016. Т. 52. № 7. С. 810-830. https://doi.org/10.7868/S0016675816070043
  16. Gusmăo L., Sánchez-Diz P., Calafell F. et al. Mutation rates at Y chromosome specific microsatellites // Hum. Mutat. 2005. V. 26. № 6. P. 520–528. https://doi.org/10.1002/humu.20254
  17. Sánchez-Diz P., Alves C., Carvalho E. et al. Population and segregation data on 17 Y-STRs: Results of a GEPISFG collaborative study // Int. J. Legal Med. 2008. V. 122. № 6. P. 529–533. https://doi.org/10.1007/s00414-008-0265-z
  18. Ge J., Budowle B., Aranda X.G. et al. Mutation rates at Y chromosome short tandem repeats in Texas populations // Forensic Sci. Int. Genet. 2009. V. 3. № 3. P. 179–184. https://doi.org/10.1016/j.fsigen.2009.01.007
  19. Burgarella С., Navasques M. Mutation rate estimates for 110 Y-chromosome STRs combining population and father-son pair data // Eur. J. Hum. Genet. 2011. V. 19 № 1. P. 70–75. https://doi.org/10.1038/ejhg.2010.154
  20. Zhivotovsky L.A., Underhill P.A., Cinnioglu C. et al. The effective mutation rate at Y chromosome short tandem repeats, with application to human population-divergence time // Am. J. Hum. Genet. 2004. № 1. P. 50–61. https://doi.org/10.1086/380911
  21. Willuweit S., Roewer L. The new Y Chromosome Haplotype Reference Database // Forensic Sci. Int. Genet. 2015. V. 15. P. 43–48. https://doi.org/10.1016/j.fsigen.2014.11.024
  22. Fu Q., Li H., Moorjani P. et al. Genome sequence of a 45000-year-old modern human from Western Siberia // Nature. 2014. V. 514. P. 445–449. https://doi.org/10.1038/nature13810
  23. Lee D.G., Kim S.J., Cho W.C. et al. Analysis of mutation rates and haplotypes of 23 Y-chromosomal STRs in Korean father-son pairs // Forensic Sci. Int. Genet. 2023. V. 65. https://doi.org/10.1016/j.fsigen.2023.102875
  24. Oh Y.N., Lee H.Y., Lee E.Y. et al. Haplotype and mutation analysis for newly suggested Y-STRs in Korean father-son pairs // Forensic Sci. Int. Genet. 2015. V. 15. P. 64–68. https://doi.org/10.1016/j.fsigen.2014.09.023
  25. Liu Z., Long G., Lang Y. et al. Sequence-based mutation patterns at 41 Y chromosomal STRs in 2 548 father-son pairs // Forensic Sci. Res. 2023. V. 8. № 2. P. 152–162. https://doi.org/10.1093/fsr/owad016
  26. Claerhout S., Vandenbosch M., Nivelle K. et al. Determining Y-STR mutation rates in deep-routing genealogies: Identification of haplogroup differences // Forensic Sci. Int. Genet. 2018. V. 34. P. 1–10. https://doi.org/10.1016/j.fsigen.2018.01.005
  27. Otagiri T., Sato N., Asamura H. et al. RMplex reveals population differences in RM Y-STR mutation rates and provides improved father-son differentiation in Japanese // Forensic Sci. Int. Genet. 2022. V. 61. https://doi.org/10.1016/j.fsigen.2022.102766
  28. Ralf A., Gonzalez D.M., Zandstra D. et al. Large-scale pedigree analysis highlights rapidly mutating Y-chromosomal short tandem repeats for differentiating patrilineal relatives and predicting their degrees of consanguinity // Hum. Genet. 2023. V. 142. № 1. P. 145–160. https://doi.org/10.1007/s00439-022-02493-2
  29. Willems T., Gymrek M., Poznik G.D. et al. Population-scale sequencing data enable precise estimates of Y-STR mutation rates // Am. J. Hum. Genet. 2016. V. 98. № 5. P. 919–933. https://doi.org/10.1016/j.ajhg.2016.04.001
  30. Ballantyne K.N., Keerl V., Wollstein A. et al. A new future of forensic Y-chromosome analysis: Rapidly mutating Y-STRs for differentiating male relatives and paternal lineages // Forensic Sci. Int. Genet. 2012. V. 6. № 2. P. 08–218. https://doi.org/10.1016/j.fsigen.2011.04.017

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences