Su(Hw) Architectural Protein Binding Sites Stimulate Recruitment of PcG/TrxG Epigenetic Regulators to Chromatin: CRISPR/Cas9-Test
- Authors: Erokhin M.M.1, Gorbenko F.V.1, Lomaev D.V.1, Chetverina D.A.1
-
Affiliations:
- Institute of Gene Biology, Russian Academy of Sciences
- Issue: Vol 59, No 3 (2023)
- Pages: 308-315
- Section: МОЛЕКУЛЯРНАЯ ГЕНЕТИКА
- URL: https://rjpbr.com/0016-6758/article/view/666875
- DOI: https://doi.org/10.31857/S0016675823030049
- EDN: https://elibrary.ru/INYMCX
- ID: 666875
Cite item
Abstract
Polycomb and Trithorax group proteins (PcG and TrxG) are epigenetic factors responsible for the repression and activation of transcription, respectively. In Drosophila, PcG/TrxG proteins are recruited to specialized DNA elements called PRE (Polycomb response elements). Depending on the context, these elements may repress, activate, or be neutral with respect to the promoter of the target gene. Previously, in transgenic studies using PhiC31 site-specific integration system, we have demonstrated that sites for architectural proteins inserted next to PRE can induce the repressive activity of bxdPRE by stimulating the binding of PcG/TrxG factors to this element. However, this effect may depend on additional DNA elements present at the integration site after PhiC31-dependent transgene insertion. In the present study, using an alternative system of integration based on CRISPR/Cas9-catalyzed homology-directed repair, we have proved that the binding sites of the architectural protein Su(Hw) are indeed able to induce the repressive activity of bxdPRE and recruitment of PcG/TrxG proteins, regardless the heterogenous DNA-sequences present at the site of integration after PhiC31-dependent insertion of the transgenes.
Keywords
About the authors
M. M. Erokhin
Institute of Gene Biology, Russian Academy of Sciences
Author for correspondence.
Email: yermaxbio@yandex.ru
Russia, 119334, Moscow
F. V. Gorbenko
Institute of Gene Biology, Russian Academy of Sciences
Email: daria.chetverina@gmail.com
Russia, 119334, Moscow
D. V. Lomaev
Institute of Gene Biology, Russian Academy of Sciences
Email: daria.chetverina@gmail.com
Russia, 119334, Moscow
D. A. Chetverina
Institute of Gene Biology, Russian Academy of Sciences
Author for correspondence.
Email: daria.chetverina@gmail.com
Russia, 119334, Moscow
References
- Chetverina D.A., Elizar’ev P.V., Lomaev D.V. et al. Control of the gene activity by Polycomb and Trithorax group proteins in Drosophila // Russian J. Genetics. 2017. V. 53. № 2. P. 133–154.
- Kassis J.A., Kennison J.A., Tamkun J.W. Polycomb and Trithorax group genes in Drosophila // Genetics. 2017. V. 206. № 4. P. 1699–1725. https://doi.org/10.1534/genetics.115.185116
- Schuettengruber B., Bourbon H.M., Di Croce L., Cavalli G. Genome regulation by Polycomb and Trithorax: 70 years and counting // Cell. 2017. V. 171. № 1. P. 34–57. https://doi.org/10.1016/j.cell.2017.08.002
- Chetverina D.A., Lomaev D.V., Erokhin M.M. Polycomb and Trithorax group proteins: The long road from mutations in Drosophila to use in medicine // Acta Naturae. 2020. V. 12. № 4. P. 66–85. https://doi.org/10.32607/actanaturae.11090
- Четверина Д.А., Ломаев Д.В., Георгиев П.Г., Ерохин М.М. Генетические нарушения активности PRC2 при онкологии: проблемы и перспективы // Генетика. 2021. Т. 57. № 3. С. 235–289. https://doi.org/10.31857/S0016675821030048
- Erokhin M., Chetverina O., Gyorffy B. et al. Clinical correlations of Polycomb repressive complex 2 in different tumor types // Cancers (Basel). 2021. V. 13. № 13.https://doi.org/10.3390/cancers13133155
- Piunti A., Shilatifard A. The roles of Polycomb repressive complexes in mammalian development and cancer // Nat. Rev. Mol. Cell. Biol. 2021. V. 22. № 5. P. 326–345. https://doi.org/10.1038/s41580-021-00341-1
- Parreno V., Martinez A.M., Cavalli G. Mechanisms of Polycomb group protein function in cancer // Cell Res. 2022. V. 32. № 3. P. 231–253. https://doi.org/10.1038/s41422-021-00606-6
- Erokhin M., Georgiev P., Chetverina D. Drosophila DNA-binding proteins in Polycomb repression // Epigenomes. 2018. V. 2. № 1. P. 1. https://doi.org/10.3390/epigenomes2010001
- Kuroda M.I., Kang H., De S., Kassis J.A. Dynamic competition of Polycomb and Trithorax in transcriptional programming // Annu. Rev. Biochem. 2020. V. 89. P. 235–253. https://doi.org/10.1146/annurev-biochem-120219-103641
- Kassis J.A. Unusual properties of regulatory DNA from the Drosophila engrailed gene: Three “pairing-sensitive” sites within a 1.6-kb region // Genetics. 1994. V. 136. № 3. P. 1025–1038. https://doi.org/10.1093/genetics/136.3.1025
- Kassis J.A. Pairing-sensitive silencing, polycomb group response elements, and transposon homing in Drosophila // Adv. Genet. 2002. V. 46. P. 421–438. https://doi.org/10.1016/s0065-2660(02)46015-4
- Mihaly J., Hogga I., Gausz J. et al. In situ dissection of the Fab-7 region of the bithorax complex into a chromatin domain boundary and a Polycomb-response element // Development. 1997. V. 124. № 9. P. 1809–1820. https://doi.org/10.1242/dev.124.9.1809
- De S., Cheng Y., Sun M.A. et al. Structure and function of an ectopic Polycomb chromatin domain // Sci. Adv. 2019. V. 5. № 1. P. eaau9739. https://doi.org/10.1126/sciadv.aau9739
- De S., Mitra A., Cheng Y. et al. Formation of a Polycomb-domain in the absence of strong Polycomb response elements // PLoS Genet. 2016. V. 12. № 7. P. e1006200. https://doi.org/10.1371/journal.pgen.1006200
- Erokhin M., Gorbenko F., Lomaev D. et al. Boundaries potentiate Polycomb response element-mediated silencing // BMC Biol. 2021. V. 19. № 1. P. 113. https://doi.org/10.1186/s12915-021-01047-8
- Horard B., Tatout C., Poux S., Pirrotta V. Structure of a Polycomb response element and in vitro binding of Polycomb group complexes containing GAGA factor // Mol. Cell. Biol. 2000. V. 20. № 9. P. 3187–3197. https://doi.org/10.1128/MCB.20.9.3187-3197.2000
- Bischof J., Maeda R.K., Hediger M. et al. An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases // Proc. Natl Acad. Sci. USA. 2007. V. 104. № 9. P. 3312–3317. https://doi.org/10.1073/pnas.0611511104
- Port F., Chen H.M., Lee T., Bullock S.L. Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila // Proc. Natl Acad. Sci. USA. 2014. V. 111. № 29. P. E2967–2976. https://doi.org/10.1073/pnas.1405500111
- Gratz S.J., Ukken F.P., Rubinstein C.D. et al. Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in Drosophila // Genetics. 2014. V. 196. № 4. P. 961–971. https://doi.org/10.1534/genetics.113.160713
- Zolotarev N., Maksimenko O., Kyrchanova O. et al. Opbp is a new architectural/insulator protein required for ribosomal gene expression // Nucl. Ac. Res. 2017. V. 45. № 21. P. 12285–12300. https://doi.org/10.1093/nar/gkx840
- Erokhin M., Davydova A., Kyrchanova O. et al. Insulators form gene loops by interacting with promoters in Drosophila // Development. 2011. V. 138. № 18. P. 4097–4106. https://doi.org/10.1242/dev.062836
- Siegal M.L., Hartl D.L. Application of Cre/loxP in Drosophila. Site-specific recombination and transgene coplacement // Methods Mol. Biol. 2000. V. 136. P. 487–495. https://doi.org/10.1385/1-59259-065-9:487
- Melnikova L., Elizar’ev P., Erokhin M. et al. The same domain of Su(Hw) is required for enhancer blocking and direct promoter repression // Sci. Rep. 2019. V. 9. № 1. P. 5314. https://doi.org/10.1038/s41598-019-41761-6
- Erokhin M., Davydova A., Parshikov A. et al. Transcription through enhancers suppresses their activity in Drosophila // Epigenetics Chromatin. 2013. V. 6. № 1. P. 31. https://doi.org/10.1186/1756-8935-6-31
- Erokhin M., Elizar’ev P., Parshikov A. et al. Transcriptional read-through is not sufficient to induce an epigenetic switch in the silencing activity of Polycomb response elements // Proc. Natl Acad. Sci. USA. 2015. V. 112. № 48. P. 14930–14935. https://doi.org/10.1073/pnas.1515276112
- Ray P., De S., Mitra A. et al. Combgap contributes to recruitment of Polycomb group proteins in Drosophila // Proc. Natl Acad. Sci. USA. 2016. V. 113. № 14. P. 3826–3831. https://doi.org/10.1073/pnas.1520926113
- Chetverina D., Aoki T., Erokhin M. et al. Making connections: Insulators organize eukaryotic chromosomes into independent cis-regulatory networks // Bioessays. 2014. V. 36. № 2. P. 163–172. https://doi.org/10.1002/bies.201300125
- Chetverina D., Fujioka M., Erokhin M. et al. Boundaries of loop domains (insulators): Determinants of chromosome form and function in multicellular eukaryotes // Bioessays. 2017. V. 39. № 3. https://doi.org/10.1002/bies.201600233
Supplementary files
