Eupolyploidy as a Modeinplant Speciation
- Authors: Rodionov A.V.1
-
Affiliations:
- Komarov Botanical Institute Russian Academy of Sciences
- Issue: Vol 59, No 5 (2023)
- Pages: 493-506
- Section: ОБЗОРНЫЕ И ТЕОРЕТИЧЕСКИЕ СТАТЬИ
- URL: https://rjpbr.com/0016-6758/article/view/666850
- DOI: https://doi.org/10.31857/S0016675823050119
- EDN: https://elibrary.ru/DRWNGX
- ID: 666850
Cite item
Abstract
When discussing phenomena of the whole genome duplication (WGD), the terms neopolyploid, mesopolyploid, and paleopolyploid are used in their modern “post-genomic” interpretation. In our opinion, in the flow of changing genome states between neopolyploids and paleopolyploids, it makes sense to single out the eupolyploid stage – a state of a polyploid, when its polyploid nature is beyond doubt, but the genome (karyotype) of the eupolyploid, unlike the neopolyploid, is already relatively stable. Most of so-called polyploid plant species are actually eupolyplids, the polyploid nature of the karyotype of which is beyond doubt among researchers – geneticists, karyologists, and florists. Optionally, eupolyploids can enter new rounds of interspecific hybridization with the hybrid maintaining the level of ploidy of the parents or with the emergence of an allopolyploid of a higher level of ploidy. Eupolyploidization of the genome is a radical and rapid method of speciation and genus formation in plants. In this way, tens of thousands of species of modern plants arose. Successful combinations of alleles of eupolyploid subgenomes, large sizes characteristic of high polyploids, frequent transition to asexual reproduction can contribute to the successful development of new areas by eupolyploids, adaptation to extreme conditions of existence at the edge of areas, but not to the acquisition of new aromorphoses – this is speciation, but speciation on already mastered level of evolutionary complexity, a step that does not in itself lead to progressive evolution.
About the authors
A. V. Rodionov
Komarov Botanical Institute Russian Academy of Sciences
Author for correspondence.
Email: avrodionov@mail.ru
Russia, 197376, St. Petersburg
References
- Grant V. Plant Speciation. N.Y.; London: Columbia Univ. Press, 1971. 233 p.
- Wood T.E., Takebayashi N., Barker M.S. et al. The frequency of polyploid speciation in vascular plants // Proc. Natl Acad. Sci. USA. 2009. V. 106. P. 13875–13879. https://doi.org/10.1073/pnas.0811575106
- Van de Peer Y., Mizrachi E., Marchal K. The evolutionary significance of polyploidy // Nature Rev. Genet. 2017. V. 18. P. 411–424. https://doi.org/10.1038/nrg.2017.26
- Liu H., Wang X., Wang G. et al. The nearly complete genome of Ginkgo biloba illuminates gymnosperm evolution // Nature Plants. 2021. V. 7. P. 748–756. https://doi.org/10.1038/s41477-021-00933-x
- Liu Y., Wang S., Li L. et al. The Cycas genome and the early evolution of seed plants // Nature Plants. 2022. V. 8. P. 389–401. https://doi.org/10.1038/s41477-022-01129-7
- Nishiyama T., Sakayama H., De Vries J. et al. The Chara genome: secondary complexity and implications for plant terrestrialization // Cell. 2018. V. 174. P. 448–464. https://doi.org/10.1016/j.cell.2018.06.033
- Banks J.A., Nishiyama T., Hasebe M. et al. The Selaginella genome identifies genetic changes associated with the evolution of vascular plants // Science. 2011. V. 332. P. 960–963 .https://doi.org/10.1126/science.1203810
- Zhang J., Fu X.X., Li R.Q. et al. The hornwort genome and early land plant evolution // Nature Plants. 2020. V. 6. P. 107–118. https://doi.org/10.1038/s41477-019-0588-4
- Bowman J.L., Kohchi T., Yamato K.T. et al. Insights into land plant evolution garnered from the Marchantia polymorpha genome // Cell. 2017. V. 171. P. 287–304. https://doi.org/10.1016/j.cell.2017.09.030
- Szövényi P., Gunadi A., Li F.W. Charting the genomic landscape of seed-free plants // Nature Plants. 2021. V. 7. P. 554–565. https://doi.org/10.1038/s41477-021-00888-z
- Benton M.J., Wilf P., Sauquet H. The Angiosperm terrestrial revolution and the origins of modern biodiversity // New Phytologist. 2022. V. 233. P. 2017–2035. https://doi.org/10.1111/nph.17822
- Barker M.S., Arrigo N., Baniaga A.E. et al. On the relative abundance of autopolyploids and allopolyploids // New Phytologist. 2016. V. 210. P. 391–398.
- Doyle J.J., Sherman-Broyles S. Double trouble: taxonomy and definitions of polyploidy // New Phytologist. 2017. V. 213. P. 487–493. https://doi.org/10.1111/nph.14276
- Mayr E. The biological species concept // Species Concepts and Phylogenetic Theory: A Debate / Eds Wheeler Q.D., Meier R. N.Y. Chichester: Columbia Univ. Press, 2000. P. 17–29.
- Ladizinsky G. Studies in Oat Evolution. Berlin; Heidelberg: Springer, 2012. P. 1–18.
- Комаров В.Л. Учение о виде у растений (страница из истории биологии). М.; Л.: Изд-во Акад. наук СССР, 1940. 212 с.
- Цвелев Н.Н. Вид как один из таксонов // Бюлл. МОИП. Отд. Биол. 1995. Т. 100. Вып. 5. С. 62–68.
- Levin D.A. The long wait for hybrid sterility in flowering plants // New Phytologist. 2012. V. 196. P. 666–670.
- Stebbins G.L. Polyploidy and the distribution of the arctic-alpine flora: New evidence and a new approach // Bot. Helvetica. 1984. V. 94. P. 1–13.
- Stebbins G.L. The origin and success of polyploids in the boreal circumpolar flora: A new analysis // Trans. Bot. Sci. Edinburgh. 1986. V. 45. P. 17–31.
- Liu J., Moeller M., Gao L.-M. et al. DNA barcoding for the discrimination of Eurasian yews (Taxus L., Taxaceae) and the discovery of cryptic species // Mol. Ecol. Resour. 2011. V. 11. P. 89–100. https://doi.org/10.1111/j.1755-0998.2010.02907.x
- Bell D., Long D.G., Forrest A.D. et al. DNA barcoding of European Herbertus (Marchantiopsida, Herbertaceae) and the discovery and description of a new species // Mol. Ecol. Resources. 2012. V. 12. P. 36–47. https://doi.org/10.1111/j.1755-0998.2011.03053.x
- Gill F.B. Species taxonomy of birds: Which null hypothesis? // The Auk: Ornithological Advances. 2014. V. 131. P. 150–161. https://doi.org/10.1642/AUK-13-206.1
- Riesberg L.H., Wood T.E., Baack E.J. The nature of plant species // Nature. 2006. V. 440. P. 524–527. https://doi.org/10.1038/nature04402
- Шнеер В.С., Коцеруба В.В. Криптические виды растений и их выявление по генетической дифференциации популяций // Экол. генетика. 2014. Т. 12. № 3. С. 12–26.
- Soltis D.E., Soltis P.S., Schemske D.W. et al. Autopolyploidy in angiosperms: have we grossly underestimated the number of species? // Taxon. 2007. V. 56. P. 13–30. https://doi.org/10.2307/25065732
- Шнеер В.С., Пунина Е.О., Родионов А.В. Внутривидовые различия в плоидности у покрытосеменных и их таксономическая интерпретация // Ботан. журн. 2018. Т. 103. № 5. С. 555–585. https://doi.org/10.1134/S0006813618050010
- Цвелев Н.Н. О геномном критерии родов у высших растений // Ботан. журн. 1991. Т. 76. № 5. С. 669–676.
- Ramsey J., Schemske D.W. Neopolyploidy in flowering plants // Annu. Rev. Ecol. Syst. 2002. V. 33. P. 589–639.
- Li Z., McKibben M.T., Finch G.S. et al. Patterns and processes of diploidization in land plants // Annu. Rev. Plant Biol. 2021. V. 72. P. 387–410. https://doi.org/10.1146/annurev-arplant-050718-100344
- Levin D.A. Plant speciation in the age of climate change // Annals Botany. 2019. V. 124. P. 769–775. https://doi.org/10.1093/aob/mcz108
- Yu Z., Haberer G., Matthes M. et al. Impact of natural genetic variation on the transcriptome of autotetraploid Arabidopsis thaliana // Proc. Natl Acad. Sci. USA. 2010. V. 107. P. 17809–17814. https://doi.org/10.1073/pnas.1000852107
- Liu B., Sun, G. Transcriptome and miRNAs analyses enhance our understanding of the evolutionary advantages of polyploidy // Critical Rev. Biotechnology. 2019. V. 39. P. 173–180. https://doi.org/10.1080/07388551.2018.1524824
- Soltis D.E., Misra B.B., Shan S. et al. Polyploidy and the proteome // Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics. 2016. V. 1864. P. 896–907. https://doi.org/10.1016/j.bbapap.2016.03.010
- Soltis D.E., Visger C.J., Marchant D.B., Soltis P.S. Polyploidy: pitfalls and paths to a paradigm // Am. J. Botany. 2016. V. 103. P. 1146–1166. https://doi.org/10.3732/ajb.1500501
- Родионов А.В., Шнеер В.С., Гнутиков А.А. и др. Диалектика видов: от исходного единообразия, через максимально возможное разнообразие к конечному единообразию // Ботан. журн. 2020. Т. 105. № 9. С. 835–853. https://doi.org/10.31857/S0006813620070091
- Favarger C. Sur l’emploi des nombres chromosomiques en géographie botanique historique // Ber. Geobot. Inst. Rübel. 1961. T. 32. S. 119–146.
- Mandáková T., Joly S., Krzywinski M. et al. Fast diploidization in close mesopolyploid relatives of Arabidopsis // The Plant Cell. 2010. V. 22. P. 2277–2290.
- Родионов А.В., Носов Н.Н., Ким Е.С. и др. Происхождение полиплоидных геномов мятликов (Poa L.) и феномен потока генов между Северной Пацификой и субантарктическими островами // Генетика. 2010. Т. 46. № 12. С. 1598–1608.
- Родионов А.В., Амосова А.В., Беляков Е.А. и др. Генетические последствия межвидовой гибридизации, ее роль в видообразовании и фенотипическом разнообразии растений // Генетика. 2019. Т. 55. № 3. С. 255–272.
- Zhan S.H., Otto S.P., Barker M.S. Broad variation in rates of polyploidy and dysploidy across flowering plants is correlated with lineage diversification // bioRxiv. 2021. this version posted March 31, 2021.https://doi.org/10.1101/2021.03.30.436382
- Навашин М.С. Об изменении числа и морфологических признаков хромосом у межвидовых гибридов // Тр. по прикладной ботанике, генетике и селекции. 1927. Т. 17. Вып. 3. С. 121–150.
- Talbert P.B., Bryson T.D., Henikoff S. Adaptive evolution of centromere proteins in plants and animals // J. Biology. 2004. V. 3(4). P. 1–17. https://doi.org/10.1186/jbiol11
- Melters D.P., Bradnam K.R., Young H.A. et al. Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution // Genome Biol. 2013. V. 14(1). P. 1–20. https://doi.org/10.1186/gb-2013-14-1-r10
- Maheshwari S., Tan E.H., West A. et al. Naturally occurring differences in CENH3 affect chromosome segregation in zygotic mitosis of hybrids // PLoS Genetics. 2015. V. 11(1). P. e1004970. https://doi.org/10.1371/journal.pgen.1004970
- Kotseruba V., Gernand D., Meister A., Houben, A. Uniparental loss of ribosomal DNA in the allotetraploid grass Zingeria trichopoda (2n = 8) // Genome. 2003. V. 46. P. 156–163. https://doi.org/10.1139/g02-104
- Marimuthu M.P., Maruthachalam R., Bondada R. et al. Epigenetically mismatched parental centromeres trigger genome elimination in hybrids // Sci. Advances. 2021. V. 7(47). eabk1151. https://doi.org/10.1126/sciadv.abk1151
- Mandáková T., Lysak M.A. Post-polyploid diploidization and diversification through dysploid changes // Curr. Opinion Plant Biol. 2018. V. 42. P. 55–65. https://doi.org/10.1016/j.pbi.2018.03.001
- Soares N.R., Mollinari M., Oliveira G.K. et al. Meiosis in polyploids and implications for genetic mapping: A review // Genes. 2021. V. 12. P. 1517. https://doi.org/10.3390/genes12101517
- Wang M., Wang P., Lin M. et al. Evolutionary dynamics of 3D genome architecture following polyploidization in cotton // Nat. Plants. 2018. V. 4. P. 90–97. https://doi.org/10.1038/s41477-017-0096-3
- Concia L., Veluchamy A., Ramirez-Prado J.S. et al. Wheat chromatin architecture is organized in genome territories and transcription factories // Genome Biol. 2020. V. 21(1). https://doi.org/10.1186/s13059-020-01998-1
- Barea L., Redondo-Río Á., Lucena-Marín R. et al. Homologous chromosome associations in domains before meiosis could facilitate chromosome recognition and pairing in wheat // Scientific Reports. 2022. V. 12(1). P. 1–11. https://doi.org/10.1038/s41598-022-14843-1
- International Wheat Genome Sequencing Consortium. Shifting the limits in wheat research and breeding using a fully annotated reference genome // Science. 2018. V. 361. eaar7191.
- Stein J.C., Yu Y., Copetti D. et al. Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza // Nat. Genetics. 2018. V. 50(2). P. 285–296. https://doi.org/10.1038/s41588-018-0040-0
- Nei M., Rooney A.P. Concerted and Birth–and–Death evolution of multigene families // Annu. Rev. Genet. 2005. V. 39. P. 121–152. https://doi.org/0.1146/annurev.genet.39.073003.112240
- Gonzalo A. All ways lead to Rome–Meiotic stabilization can take many routes in nascent polyploid plants // Genes. 2022. V. 13(1). P. 147. https://doi.org/10.3390/genes13010147
- Viegas W.S., Mello-Sampayo T., Feldman M., Avivi L. Reduction of chromosome pairing by a spontaneous mutation on chromosomal arm 5DL of Triticum aestivum // Can. J. Genet. Cytol. 1980. V. 22. P. 569–575. https://doi.org/10.1139/g80-062
- Svačina R., Sourdille P., Kopecký D., Bartoš J. Chromosome pairing in polyploid grasses // Front. Plant Sci. 2020. V. 11. P. 1056. https://doi.org/10.3389/fpls.2020.01056
- Jenczewski E., Alix K. From diploids to allopolyploids: The emergence of efficient pairing control genes in plants // Crit. Rev. Plant Sci. 2004. V. 23. P. 21–45. https://doi.org/10.1080/07352680490273239
- Cuñado N., Blazquez S., Melchor L. et al. Understanding the cytological diploidization mechanism of polyploid wild wheats // Cytogenet. Genome Res. 2005. V. 109. P. 205–209. https://doi.org/10.1159/000082401
- Tang Z.X., Fu S.L., Yan B.J. et al. Unequal chromosome division and inter-genomic translocation occurred in somatic cells of wheat–rye allopolyploid // J. Plant. Res. 2012. V. 125. P. 283–290. https://doi.org/10.1007/s10265-011-0432-z
- Luo J., Zhao L., Zheng J. et al. Karyotype mosaicism in early generation synthetic hexaploid wheats // Genome. 2020. V. 63. P. 329–336. https://doi.org/10.1139/gen-2019-0148
- Gill B.S., Chen P.D. Role of cytoplasm-specific introgression in the evolution of the polyploid wheats // Proc. Natl Acad. Sci. USA. 1987. V. 84. № 19. P. 6800–6804. https://doi.org/10.1073/pnas.84.19.6800
- Бадаева Е.Д., Шелухина О.Ю., Дедкова О.С. и др. Сравнительное цитогенетическое исследование гексаплоидных видов Avena L. // Генетика. 2011. Т. 47. № 6. С. 783–795.
- Amosova A.V., Badaeva E.D., Muravenko O.V., Zelenin A.V. An improved method of genomic in situ hybridization (GISH) for distinguishing closely related genomes of tetraploid and hexaploid wheat species // Rus. J. Developm. Biol. 2009. V. 40. № 2. P. 90–94.
- Liu Q., Lin L., Zhou X. et al. Unraveling the evolutionary dynamics of ancient and recent polyploidization events in Avena (Poaceae) // Scientific Reports. 2017. V. 7(1). P. 1–13. https://doi.org/10.1038/srep41944
- Jellen E.N., Gill B.S., Cox T.S. Genomic in situ hybridization differentiates between A/D- and C-genome chromatin and detects intergenomic translocations in polyploid oat species (genus Avena) // Genome. 1994. V. 37. P. 613–618.
- Lim K.Y., Kovarik A., Matyasek R. et al. Sequence of events leading to near-complete genome turnover in allopolyploid Nicotiana within five million years // New Phytologist. 2007. V. 175. P. 756–763. https://doi.org/10.1111/j.1469-8137.2007.02121.x
- Winterfeld G., Schneider J., Perner K., Röser M. Polyploidy and hybridization as main factors of speciation: complex reticulate evolution within the grass genus Helictochloa // Cytogen. Genome Res. 2014. V. 142. P. 204–225. https://doi.org/10.1159/000361002
- Suissa J.S., Kinosian S.P., Schafran P.W. et al. Homoploid hybrids, allopolyploids, and high ploidy levels characterize the evolutionary history of a western North American quillwort (Isoëtes) complex // Mol. Phylogen. Evol. 2022. V. 166. P. 107332. https://doi.org/10.1016/j.ympev.2021
- Sutherland B.L., Galloway L.F. Postzygotic isolation varies by ploidy level within a polyploid complex // New Phytologist. 2017. V. 213. P. 404–412.
- Камелин Р.В. Особенности видообразования у цветковых растений // Тр. Зоол. ин-та РАН. Приложение № 1. 2009. С. 141–149.
- Цвелев Н.Н., Пробатова Н.С. Злаки России. М.: Тов-во науч. изд. КМК, 2019. 646 с.
- Rice A., Šmarda P., Novosolov M. et al. The global biogeography of polyploid plants // Nature Ecol. Evol. 2019. V. 3. P .265–273. https://doi.org/10.1038/s41559-018-0787-9
- Vaezi J., Brouillet L. Origin of Symphyotrichum anticostense (Asteraceae: Astereae), an endemic, high polyploid species of the Gulf of St. Lawrence region, based on morphological and nrDNA evidence // Botany. 2022. https://doi.org/10.1139/cjb-2021-0145
- Pellicer J., Garcia S., Garnatje T. et al. Chromosome counts in Asian Artemisia L. (Asteraceae) species: From diploids to the first report of the highest polyploid in the genus // Bot. J. Linn. Soc. 2007. V. 153. P. 301–310. https://doi.org/10.1111/j.1095-8339.2007.00611.x
- Guggisberg A., Mansion G., Kelso S., Conti E. Evolution of biogeographic patterns, ploidy levels, and breeding systems in a diploid–polyploid species complex of Primula // New Phytologist. 2006. V. 171. P. 617–632. https://doi.org/10.1111/j.1469-8137.2006.01722.x
- Kaur H., Mubarik N., Kumari S., Gupta R.C. Chromosome numbers and basic chromosome numbers in monocotyledonous genera of the Western Himalayas (India) // Acta Biologica Cracoviensia. Ser. Botanica. 2014. V. 56. № 2. P. 9–19. https://doi.org/10.2478/abcsb-2014-0016
- Winterfeld G., Schneider J., Perner K., Röser M. Origin of highly polyploid species: Different pathways of auto and allopolyploidy in 12–18× species of Avenula (Poaceae) // Int. J. Plant Sci. 2012. V. 173. P. 399–411. https://doi.org/10.1086/664710
- Hardion L., Verlaque R., Rosato M. et al. Impact of polyploidy on fertility variation of Mediterranean Arundo L. (Poaceae) // Comptes Rendus Biologies. 2015. V. 338. P. 298–306. https://doi.org/10.1016/j.crvi.2015.03.013
- Chumová Z., Krejčíková J., Mandáková T. et al. Evolutionary and taxonomic implications of variation in nuclear genome size: Lesson from the grass genus Anthoxanthum (Poaceae) // PLoS One. 2015. V. 10(7). e0133748. https://doi.org/10.1371/journal.pone.0133748
- Gould F.W. Pollen size as related to polyploidy and speciation in the Andropogon saccharoides–A. barbinodis complex // Brittonia. 1957. V. 9. № 2. P. 71–75.
- Hair J.B., Beuzenberg E.J. High polyploidy in a New Zealand Poa // Nature. 1961. V. 189. P. 160.
- Li L.F., Zhang Z.B., Wang Z.H. et al. Genome sequences of the five Sitopsis species of Aegilops and the origin of polyploid wheat B subgenome // Mol. Plant. 2022. V. 15. P. 488–503. https://doi.org/10.1016/j.molp.2021.12.019
- Levy A.A., Feldman M. Evolution and origin of bread wheat // The Plant Cell. 2022. koac130. https://doi.org/10.1093/plcell/koac130
- Eilam T., Anikster Y., Millet E. et al. Nuclear DNA amount and genome downsizing in natural and synthetic allopolyploids of the genera Aegilops and Triticum // Genome. 2008. V. 51. P. 616–627. https://doi.org/10.1139/G08-043
- Kamal N., Tsardakas Renhuldt N., Bentzer J. et al. The mosaic oat genome gives insights into a uniquely healthy cereal crop // Nature. 2022. V. 606. P. 113–119. https://doi.org/0.1038/s41586-022-04732-y
- Löve Á. Generic evolution of the wheat grasses // BioI. Zentralbl. 1982. T. 101. S. 199–212.
- Löve Á. Conspectus of the Triticeae // Feddes Repert. 1984. T. 95. S. 425–521.
- Dewey D.R. The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae // Gene Manipulation in Plant Improvement. Boston, MA: Springer, 1984. P. 209–279.
- Делоне Л.Н. Сравнительное кариологическое исследование видов Muscari Mill. и Bellevalia Lapeyr. // Вестн. Тифлисского бот. сада. 1922. Т. 2. Вып. 1. С. 1–32.
- Wang R.R.-C., von Bothmer R., Dvorak J. et al. Genome symbols in the Triticeae (Poaceae) // Herbarium Publications. Logan, Uta: Uta State Publ., 1994. Paper 20. P. 1–19. https://digitalcommons.usu.edu/herbarium_pubs/20
- Blattner F.R. Taxonomy of the genus Hordeum and barley (Hordeum vulgare) // The Barley Genome. Cham.: Springer, 2018. P. 11–23.
- Baum B.R., Estes J.R., Gupta P.K. Assessment of the genomic system of classification in the Triticeae // Am. J. Botany. 1987. V. 74. P. 1388–1395.
- Barkworth M.E. Taxonomy of the Triticeae: A historical perspective // Hereditas. 1992. V. 116. P. 1–14.
- Камелин Р.В. Лекции по систематике растений. Главы теоретической систематики растений. Барнаул: Азбука, 2004. 226 с.
- Yen C., Yang J.-L., Yen Y. Hitoshi Kihara, Áskell Löve and the modern genetic concept of the genera in the tribe Triticeae (Poaceae) // J. Syst. Evol. 2005. V. 43. P. 82–93.
- Vavilov N.I. The law of homologous series in variation // J. Genet. 1922. V. 12. P. 47–89.
- Вавилов Н.И. Закон гомологических рядов в наследственной изменчивости. М.; Л.: ОГИЗ-Сельхозгиз, 1935. 56 с.
- Цвелев Н.Н. О возможности деспециализации путем гибридогенеза на примере эволюции трибы Triticeae семейства Злаков (Poaceae) // Журн. общей биологии. 1975. Т. 36. № 1. С. 90–99.
- Kihara H. Genom analyse bei Triticum und Aegilops // Cytologia. 1930. V. 1. № 3. P. 263–284.
- Цвелев Н.Н. Гибридизация как один из факторов увеличения биологического разнообразия и геномный критерий родов у высших растений // Биологическое разнообразие: подходы к изучению и сохранению. СПб., 1992. С. 193–201.
- Simpson G.G. Tempo and Mode in Evolution. N.Y.: Columbia Univ. Press, 1944. 237 p.
- Saarela J.M., Bull R.D., Paradis M.J. et al. Molecular phylogenetics of cool-season grasses in the subtribes Agrostidinae, Anthoxanthinae, Aveninae, Brizinae, Calothecinae, Koeleriinae and Phalaridinae (Poaceae, Pooideae, Poeae, Poeae chloroplast group 1) // PhytoKeys. 2017. V. 87. 1–139. https://doi.org/10.3897/phytokeys.87.12774
- Dauphin B., Grant J.R., Farrar D.R., Rothfels C.J. Rapid allopolyploid radiation of moonwort ferns (Botrychium; Ophioglossaceae) revealed by PacBio sequencing of homologous and homeologous nuclear regions // Mol. Phylogenet. Evol. 2018. V. 120. P. 342–353. https://doi.org/10.1016/j.ympev.2017.11.025
- Schinkel C.C., Kirchheimer B., Dellinger A.S. et al. Correlations of polyploidy and apomixis with elevation and associated environmental gradients in an alpine plant // AoB Plants. 2016. V. 8. P. 1–16. https://doi.org/10.1093/aobpla/plw064
- Herben T., Suda J., Klimešová J. Polyploid species rely on vegetative reproduction more than diploids: a re-examination of the old hypothesis // Annals Botany. 2017. V. 120. P. 341–349. https://doi.org/10.1093/aob/mcx009
- Meudt H.M., Albach D.C., Tanentzap A.J. et al. Polyploidy on islands: its emergence and importance for diversification // Front. Plant Sci. 2021. V. 12:637214. https://doi.org/10.3389/fpls.2021.637214
- Villa S., Montagna M., Pierce S. Endemism in recently diverged angiosperms is associated with polyploidy // Plant Ecology. 2022. V. 223. P. 479–492. https://doi.org/10.1007/s11258-022-01223-y
- Pécrix Y., Rallo G., Folzer H. et al. Polyploidization mechanisms: temperature environment can induce diploid gamete formation in Rosa sp. // J. Exp. Bot. 2011. V. 62. P. 3587–3597. https://doi.org/10.1093/jxb/err052
- Klatt S., Schinkel C.C., Kirchheimer B. et al. Effects of cold treatments on fitness and mode of reproduction in the diploid and polyploid alpine plant Ranunculus kuepferi (Ranunculaceae) // Annals Botany. 2018. V. 121. P. 1287–1298.
- Fox D.T., Soltis D.E., Soltis, P.S. et al. Polyploidy: A biological force from cells to ecosystems // Trends Cell Biol. 2020. V. 30. P. 688–694. https://doi.org/10.1016/j.tcb.2020.06.006
- Prentis P.J., Wilson J.R., Dormontt E.E. et al. Adaptive evolution in invasive species // Trends Plant Sci. 2008. V. 13. P. 288–294.
- Brochmann C., Brysting A.K., Alsos I.G. et al. Polyploidy in arctic plants // Biol. J. Linn. Soc. 2004. V. 82. P. 521–536. https://doi.org/10.1111/j.1095-8312.2004.00337.x
- Пробатова Н.С. Хромосомные числа в семействе Poaceae и их значение для систематики, филогении и фитогеографии (на примере злаков Дальнего Востока России) // Комаровские чтения. 2007. Вып. 55. С. 9–103.
- Clausen J. Introgression facilitated by apomixis in polyploid Poas // Euphytica. 1961. V. 10. P. 87–94. https://doi.org/10.1007/BF00037208
- Soltis D.E., Visger C.J., Soltis P.S. The polyploidy revolution then… and now: Stebbins revisited // Am. J. Botany. 2014. 101. P. 1057–1078. https://doi.org/10.3732/ajb.1400178
- Mayrose I., Zhan S.H., Rothfels C.J. et al. Recently formed polyploid plants diversify at lower rates // Science. 2011. V. 333. P. 1257. https://doi.org/10.1126/science.1207205
- Schranz M.E., Mohammadin S., Edger P.P. Ancient whole genome duplications, novelty and diversification: The WGD Radiation Lag-Time Model // Curr. Opinion Plant Biol. 2012. V. 15. P. 147–153. https://doi.org/10.1016/j.pbi.2012.03.011
- Wang X., Morton J.A., Pellicer J. et al. Genome downsizing after polyploidy: Mechanisms, rates and selection pressures // The Plant J. 2021. V. 107. P. 1003–1015. https://doi.org/10.1111/tpj.15363
