Model of transient creep for a ferritic-martensitic steel based on the modified θ-projection method

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The paper presents the developed model for predicting the behavior of a ferritic-martensitic steel during all creep stages. A modified θ-projection method is proposed as a solution. The main advantages of the method are abilities to model creep curves for a wide range of temperatures and stresses (which reduces the need for long-term run tests); to validate calculations by determining time to failure; to predict a steady-state creep rate. Despite the usefulness of the proposed approach, certain limitations are noted that result in modeling uncertainties. Higher accuracy and robustness can be achieved using a "mechanical equation of state equation" model of Rabotnov type.

Texto integral

Acesso é fechado

Sobre autores

А. Kolotovkina

Academician A.A. Bochvar High-Tech Research Institute of Inorganic Materials

Autor responsável pela correspondência
Email: AVKolotovkina@bochvar.ru
Rússia, Moscow, 123098

V. Zborovskii

Lebedev Physical Institute of the Russian Academy of Sciences, Troitsk Branch; National Research Center “Kurchatov Institute”

Email: AVKolotovkina@bochvar.ru
Rússia, Troitsk, Moscow, 108840; Moscow, 123182

M. Leonteva-Smirnova

Academician A.A. Bochvar High-Tech Research Institute of Inorganic Materials

Email: AVKolotovkina@bochvar.ru
Rússia, Moscow, 123098

Bibliografia

  1. ASME Boiler & Pressure Vessel Code, Section III – Rules for Construction of Nuclear Facility Components – Section II – Part D Properties (Customary). ASME 2019 Edition.
  2. Сапунов В.Т. Прогнозирование ползучести и длительной прочности жаропрочных сталей и сплавов ЯЭУ. М.: НИЯУ МИФИ, 2015. 136 с.
  3. Riedel H. Fracture at High Temperature. Berlin: Springer, 1987. 418 p.
  4. Булыгин И.И., Голубовский Е.Р., Трунин И.И. Прогнозирование характеристик ползучести сплавов для ГТД // Проблемы прочности. 1978. № 6. С. 19–21.
  5. Работнов Ю.Н. Ползучесть элементов конструкций. М.: Наука, 1966. 753 с.
  6. Качанов Л.М. Теория ползучести М.: ФИЗМАТЛИТ, 1960. 455 с.
  7. Evans R., Parker J., Wilshire B. Recent advances in creep and fracture of engineering materials and structures. B. Wilshire and D.R.J. Owen. Pineridge Press, 1982. 135.
  8. Evans R. Statistical scatter and variability of creep property estimates in θ projection method // Mater. Sci. Technol. 1989. V. 5. P. 699–707.
  9. ГОСТ 10145–81. Металлы. Метод испытания на длительную прочность.
  10. Jeyaraj A., Vijayanand V.D., Ganesan V. Grain size effect on creep properties of 304HCu SS and modelling of creep curves using modified theta projection approach // Trans. Ind.National Academy of Engineering. 2021. V. 10.
  11. Peng Yu, Weimin Ma. A modified theta projection model for creep behavior of RPV steel 16MND5 // J. Mater. Sci. Techn. 2020. V. 47. P. 231–242.
  12. Evans M. Sensitivity of the theta projection technique to the functional form of the theta interpolation/extrapolation function // J. Mater. Sci. 2002. V. 37. P. 2871–2884.
  13. Деммель Дж. Вычислительная линейная алгебра. М.: МИР, 2001. 430 с.
  14. Perez J. An alternative method of calibration and prediction for the theta-projection model // ETD Collection for University of Texas. 2019. V. 69.
  15. Srinivasan V., Vanajal J., Choudhary B. Modeling of creep deformation behaviour of RAFM steel // Trans. Ind. Institute of Metals. 2016. V. 69. P. 567–571.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Experimental creep curves from the experimental base and the corresponding approximated curves calculated according to (1).

Baixar (482KB)
3. Fig. 2. Dependences of the final actual values ​​of the coefficients θi(i = 1–4) on the stress σ and temperature T, as well as their approximate functional dependencies: a – coefficient θ1; b – coefficient θ2; c – coefficient θ3; d – coefficient θ4.

Baixar (299KB)
4. Fig. 3. Dependences of the steady-state creep rate ε̇ stat on the stress σ and temperature T, as well as the approximate functional dependence.

Baixar (102KB)
5. Fig. 4. Dependences of the creep time to failure τR on the stress σ and temperature T of the obtained creep rates ε̇ stat.

Baixar (88KB)
6. Fig. 5. Scatter plot of experimental and calculated values ​​of creep time to failure τR .

Baixar (87KB)
7. Fig. 6. Experimental and simulated creep curves for the same values ​​of stress σ and temperature T: a – 40 MPa, 943 K; b – 100 MPa, 943 K; c – 50 MPa, 923 K; g – 100 MPa, 923 K; d – 75 MPa, 923 K; f – 14(13) MPa, 1073 K; g – 400 MPa, 773 K; h – 440 MPa, 773 K.

Baixar (551KB)
8. Fig. 7. Modeled and closest experimental creep curves in terms of the combination of stress σ and temperature T.

Baixar (273KB)