Синтез оксидных композитов титана и марганца, исследование их физико-химических и фотокаталитических свойств
- Авторы: Беликов М.Л.1, Сафарян С.А.1, Корнейкова П.А.1
- 
							Учреждения: 
							- Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева – обособленное подразделение Федерального исследовательского центра “Кольский научный центр Российской академии наук”
 
- Выпуск: Том 59, № 2 (2023)
- Страницы: 150-161
- Раздел: Статьи
- URL: https://rjpbr.com/0002-337X/article/view/668341
- DOI: https://doi.org/10.31857/S0002337X23020021
- EDN: https://elibrary.ru/YCJMPL
- ID: 668341
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Синтезированы фотокаталитически активные материалы на основе титана и марганца. Изучены особенности формирования полученных материалов, их физико-химические и фотокаталитические свойства. Показано, что модифицирование TiO2 марганцем приводит к получению нанодисперсных порошков (4.8–2550 нм) со свободной удельной поверхностью от 0.56 до 479 м2/г. Синтезированные порошки обладают высокой фотокаталитической активностью (ФКА) при облучении видимым светом, превышающей ФКА немодифицированного TiO2 схожего генезиса и промышленного диоксида титана Р-25 фирмы Degussa. Повышенный уровень ФКА наблюдается для образцов, модифицированных марганцем, одновременно содержащих анатаз и рутил, без обособления отдельных фаз марганца.
Ключевые слова
Об авторах
М. Л. Беликов
Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева – обособленное подразделение Федерального исследовательского центра “Кольский научный центр Российской академии наук”
														Email: masim-bek@mail.ru
				                					                																			                												                								Россия, 184209, Мурманская обл., Апатиты, Академгородок, 26а						
С. А. Сафарян
Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева – обособленное подразделение Федерального исследовательского центра “Кольский научный центр Российской академии наук”
														Email: masim-bek@mail.ru
				                					                																			                												                								Россия, 184209, Мурманская обл., Апатиты, Академгородок, 26а						
П. А. Корнейкова
Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева – обособленное подразделение Федерального исследовательского центра “Кольский научный центр Российской академии наук”
							Автор, ответственный за переписку.
							Email: masim-bek@mail.ru
				                					                																			                												                								Россия, 184209, Мурманская обл., Апатиты, Академгородок, 26а						
Список литературы
- Fujishima A., Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode // Nature. 1972. V. 238. № 5358. P. 37–38. https://doi.org/10.1038/238037a0
- Dong H., Zeng G., Tang L., Fan C., Zhang C., He X. An Overview on Limitations of TiO2-Based Particles for Photocatalytic Degradation of Organic Pollutants and the Corresponding Countermeasures // Water. Res. 2015. V. 79. P. 128–146. https://doi.org/10.1016/j.watres.2015.04.038
- Jiang L., Wang Y., Feng C. Application of Photocatalytic Technology in Environmental Safety // Procedia Eng. 2012. V. 45. P. 993–997. https://doi.org/10.1016/j.proeng.2012.08.271
- Tasbihi M., Călin I., Šuligoj A., Fanetti M., Lavrenčič Štangar U. Photocatalytic Degradation of Gaseous Toluene by using TiO2 Nanoparticles Immobilized on Fiberglass Cloth // J. Photochem. Photobiol., A. 2017. V. 336. P. 89–97. https://doi.org/10.1016/j.jphotochem.2016.12.025
- Bhattacharyya A., Kawi S., Ray M.B. Photocatalytic Degradation of Orange II by TiO2 Catalysts Supported on Adsorbents // Catal. Today. 2004. V. 98. № 3. P. 431–439. https://doi.org/10.1016/j.cattod.2004.08.010
- Jacoby W.A., Maness P.C., Wolfrum E.J., Blake D.M., Fennell J.A. Mineralization of Bacterial Cell Mass on a Photocatalytic Surface in Air // Environ. Sci. Technol. 1998. V. 32. № 17. P. 2650–2653. https://doi.org/10.1021/es980036f
- Caballero L., Whitehead K.A., Allen N.S., Verran J. Inactivation of Escherichia coli on Immobilized TiO2 Using Fluorescent Light // J. Photochem. Photobiol., A. 2009. V. 202. № 2. P. 92–98. https://doi.org/10.1016/j.jphotochem.2008.11.005
- Liu H.-L., Yang Thomas C.-K. Photocatalytic Inactivation of Escherichia coli and Lactobacillus helveticus by ZnO and TiO2 Activated with Ultraviolet Light // Process Biochem. 2003. V. 39. № 4. P. 475–481. https://doi.org/10.1016/S0032-9592(03)00084-0
- Burton P., Peterson E., Boyle T. et al. Synthesis of High Surface Area ZnO(0001) Plates as Novel Oxide Supports for Heterogeneous Catalysts // Catal. Lett. 2010. V. 139. № 1. P. 26–32. https://doi.org/10.1007/s10562-010-0405-1
- Bignozzi C.A., Caramori S., Cristino V. et al. Nanostructured Photoelectrodes Based on WO3: Applications to Photooxidation of Aqueous Electrolytes // Chem. Soc. Rev. 2013. V. 42. № 6. P. 2228–2246. https://doi.org/10.1039/c2cs35373c
- Tian L., Ye L., Liu J. et al. Solvothermal Synthesis of CNTs–WO3 Hybrid Nanostructures with High Photocatalytic Activity under Visible Light // Catal. Commun. 2012. V. 17. P. 99–103. https://doi.org/10.1016/j.catcom.2011.10.023
- Franking R., Li L., Lukowski M.A. et al. Facile Post-Growth Doping of Nanostructured Hematite Photoanodes for Enhanced Photoelectrochemical Water Oxidation // Energy Environ. Sci. 2013. V. 6. № 2. P. 500–512. https://doi.org/10.1039/C2EE23837C
- Bang J.U., Lee S.J., Jang J.S. et al. Geometric Effect of Single or Double Metal-Tipped CdSe Nanorods on Photocatalytic H2 Generation // J. Phys. Chem. Lett. 2012. V. 3. № 24. P. 3781–3785. https://doi.org/10.1021/jz301732n
- Wang J., Yin S., Zhang Q. et al. Mechanochemical Synthesis of Fluorine-Doped SrTiO3 and Its Photo-Oxidation Properties // Chem. Lett. 2003. V. 32. № 6. P. 540–541. https://doi.org/10.1246/cl.2003.540
- Kirovskaya I.A., Timoshenko O.T., Karpova E.O. The Catalytic and Photocatalytic Properties of InP-CdS and ZnTe-CdS System Components // Russ. J. Phys. Chem. A. 2011. V. 85. № 4. P. 557–560. https://doi.org/10.1134/S0036024411030186
- Phuruangrat A., Sakhon T., Kuntalue B. et al. Characterization of Visible-Light-Induced BiVO4 Photocatalyst Synthesized by Chemical Combustion Method Fueled by Tartaric Acid // Russ. J. Inorg. Chem. 2021. V. 66. P. 1829–1836. https://doi.org/10.1134/S0036023621120135
- Chomkitichai W., Jansanthea P., Channei D. Photocatalytic Activity Enhancement in Methylene Blue Degradation by Loading Ag Nanoparticles onto α-Fe2O3 // Russ. J. Inorg. Chem. 2021. V. 66. P. 1995–2003. https://doi.org/10.1134/S0036023621130027
- Dongmei He, Du L., Wang K. et al. Efficient Process of ALD CuO and Its Application in Photocatalytic H2 Evolution // Russ. J. Inorg. Chem. 2021. V. 66. P. 1986–1994. https://doi.org/10.1134/S0036023621130040
- Dumrongrojthanath P., Phuruangrat A., Sakhon T. et al. Effect of Gd Dopant on Visible-Light-Driven Photocatalytic Properties of CeO2 Nanowires Synthesized Microwave-Assisted Hydrothermal Method // Russ. J. Inorg. Chem. 2022. V. 67. P. 1880–1887. https://doi.org/10.1134/S0036023622600757
- Shtareva A.V., Shtarev D.S., Balanov M.I. et al. Bismuthyl Carbonate Heterostructures Are a Way to Enhance the Photocatalytic Activity of Alkaline-Earth Bismuthates // Russ. J. Inorg. Chem. 2022. V. 67. P. 1375–1385. https://doi.org/10.1134/S0036023622090157
- Shtarev D.S., Shtareva A.V., Petrova A.Y. Effects of the Dopant Type and Concentration on the Photocatalytic Activity of Strontium Bismuthate Sr2Bi2O5 // Russ. J. Inorg. Chem. 2022. V. 67. P. 1368–1374. https://doi.org/10.1134/S0036023622090145
- Bhatkhande D.S., Pangarkar V.G., Beenackers A.A.C.M. Photocatalytic Degradation for Environmental Applications – a Review // J. Chem. Technol. Biotechnol. 2002. V. 77. № 1. P. 102–116. https://doi.org/10.1002/jctb.532
- Yu J.C., Ho W., Yu J., Yip H., Wong P.K., Jincai Z. Efficient Visible-Light-Induced Photocatalytic Disinfection on Sulfur-Doped Nanocrystalline Titania // Environ. Sci. Technol. 2005. V. 39. № 4. P. 1175–1179. https://doi.org/10.1021/es035374h
- Wang W., Huang G., Yu J.C., Wong P.K. Advances in Photocatalytic Disinfection of Bacteria: Development of Photocatalysts and Mechanisms // J. Environ. Sci. 2015. V. 34. P. 232–247. https://doi.org/10.1016/j.jes.2015.05.003
- Karvinen S.M. The Effects of Trace Element Doping on the Optical Properties and Photocatalytic Activity of Nanostructured Titanium Dioxide // Ind. Eng. Chem. Res. 2003. V. 42. № 5. P. 1035–1043. https://doi.org/10.1021/ie020358z
- Szczepanik B. Photocatalytic Degradation of Organic Contaminants over Clay-TiO2 Nanocomposites: A Review // Appl. Clay Sci. 2017. V. 141. P. 227–239. https://doi.org/10.1016/j.clay.2017.02.029
- Khan H., Berk D. Synthesis, Physicochemical Properties and Visible Light Photocatalytic Studies of Molybdenum, Iron and Vanadium Doped Titanium Dioxide // React. Kinet. Mech. Catal. 2014. V. 111. № 1. P. 393–414. https://doi.org/10.1007/s11144-013-0637-3
- Devi L.G., Nagaraju K., Murthy B.N., Girish K.S. Enhanced Photocatalytic Activity of Transition Metal Ions Mn2+, Ni2+ and Zn2+ Doped Polycrystalline Titania for the Degradation of Aniline Blue under UV/Solar Light // J. Mol. Catal. A. 2010. V. 328. № 1–2. P. 44–52. https://doi.org/10.1016/j.molcata.2010.05.021
- Anpo M. Use of visible Light. Second-Generation Titanium Oxide Photocatalysts Prepared by the Application of an Advanced Metal Ion-Implantation Method // Pure Appl. Chem. 2000. V. 72. № 9. P. 1787–1792. https://doi.org/10.1351/pac200072091787
- Brus V.V., Kovalyuk Z.D., Maryanchuk P.D. Optical Properties of TiO2–MnO2 thin Films Prepared by Electron-Beam Evaporation // Tech. Phys. 2012. V. 57. № 8. P. 1148–1151. https://doi.org/10.1134/S1063784212080063
- Ivanova T., Harizanova A. Characterization of TiO and TiO–MnO Oxides Prepared by Sol–gel Method // Solid State Ionics. 2001. V. 138. P. 227–232. https://doi.org/10.1016/S0167-2738(00)00798-0
- Опра Д.П., Гнеденков С.В., Синебрюхов С.Л. и др. Легированный марганцем диоксид титана с улучшенными электрохимическими характеристиками для литий-ионных аккумуляторов // Электрохимическая энергетика. 2019. Т. 19. № 3. С. 123–140. https://doi.org/10.18500/1608-4039-2019-19-3-123-140
- Беликов М.Л., Седнева Т.А., Локшин Э.П. Адсорбционные и фотокаталитические свойства диоксидa титана, модифицированного вольфрамом // Неорган. материалы. 2021. Т. 47. № 2. С. 154–162. https://doi.org/10.31857/S0002337X21020020
- Jin Q., Arimoto H., Fujishima M., Tada H. Manganese Oxide-Surface Modified Titanium (IV) Dioxide as Environmental Catalyst // Catalysts. 2013. V. 3. № 2. P. 444–454. https://doi.org/10.3390/catal3020444
- Седнева Т.А., Локшин Э.П., Беликов М.Л., Калинников В.Т. Способ получения фотокаталитического нанокомпозита, содержащего диоксид титана: Пат. № 2435733 РФ. 2011. БИ № 34.
- Седнева Т.А., Локшин Э.П., Беликов М.Л., Беляевский А.Т. Синтез и исследования фотокаталитических оксидных композитов титана(IV) и кобальта(II) // Хим. технология. 2015. Т. 16. № 7. С. 398–407.
- Matthews R.W., McEvoy S.R. Destruction of Phenol in Water with Sun, Sand, and Photocatalysis // Sol. Energy. 1992. V. 49. № 6. P. 507–513. https://doi.org/10.1016/0038-092X(92)90159-8
- Иванова В.П., Касатов Б.К., Красавина Т.Н., Розинова Е.Л. Термический анализ минералов и горных пород. Л.: Недра, 1974. С. 47.
- Liptay G. Atlas of Thermoanalytical Curves. Budapest: Academiai Kiado, 1973. V. 2. P. 78.
- Казенас К.Е., Цветков Ю.В. Испарение оксидов. М.: Наука, 1997. 543 с.
- Грег С., Синг К. Адсорбция. Удельная поверхность, пористость. М.: Мир, 1984. 306 с.
- Parida K.M., Sahu N. Visible Light Induced Photocatalytic Activity of Rare Earth Titania Nanocomposites // J. Mol. Catal. A. 2008. V. 287. № 1–2. P. 151–158. https://doi.org/10.1016/j.molcata.2008.02.028
- Агафонов А.В., Редозубов А.А., Козик В.В., Краев А.С. Фотокаталитическая активность нанопорошков диоксида титана, полученных золь-гель методом при различных значениях рН // Журн. неорган. химии. 2015. Т. 60. № 8. С. 1001–1008. https://doi.org/10.7868/S0044457X15080024
- Степанов А.Ю., Сотникова Л.В., Владимиров А.А. и др. Синтез и исследование фотокаталитических свойств материалов на основе TiO2 // Вестн. Кемеровского гос. ун-та. 2013. Т. 1. № 2. С. 249–255.
- Sabnis R.W., Ross E., Köthe J., Naumann R. et al. Indicator Reagents // Ullmann’s Encyclopedia of Industrial Chemistry. Weinheim: Wiley, 2009. V. 19. P. 9–53. https://doi.org/10.1002/14356007.a14_127.pub2
- Наянова Е.В., Елипашева Е.В., Сергеев Г.М., Сергеева В.П. Редокс-свойства метиленового голубого как перспективного фотометрического реагента для определения галогенных окислителей // Аналитика и контроль. 2015. Т. 19. № 2. С. 154–160. https://doi.org/10.15826/analitika.2015.19.2.005
- Вакулин И.В., Бугаец Д.В., Зильберг Р.А. Анализ точности расчета Rеd/Оx потенциалов замещенных фенолов, хинонов, и анилинов полуэмпирическими методами АМ1, RM1 и РM7 // Бутлеровские сообщения. 2017. Т. 52. № 11. С. 53–59. https://doi.org/10.37952/ROI-jbc-01/17-52-11-53
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 








