Operator estimates for problems in domains with singular curving of boundary
- Autores: Borisov D.I.1, Suleimanov R.R.2
- 
							Afiliações: 
							- Institute of Mathematics, Ufa Federal Research Center, RAS
- Ufa University of Science and Technologies
 
- Edição: Volume 515 (2024)
- Páginas: 11-17
- Seção: MATHEMATICS
- URL: https://rjpbr.com/2686-9543/article/view/647913
- DOI: https://doi.org/10.31857/S2686954324010025
- EDN: https://elibrary.ru/ZUFAST
- ID: 647913
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
We consider a system of second order semi-linear elliptic equations in a multidimensional domain, the boundary of which is arbitrarily curved and is contained in a narrow layer along the unperturbed boundary. On the curve boundary we impose the Dirichlet or Neumann condition. In the case of the Neumann condition, on the structure of curving we additionally impose rather natural and weak conditions. Under such conditions we show that the homogenized problem is for the same system of equations in the unperturbed problem with the boundary condition of the same kind. The main result are - and L-operator estimates.
Palavras-chave
Texto integral
 
												
	                        Sobre autores
D. Borisov
Institute of Mathematics, Ufa Federal Research Center, RAS
							Autor responsável pela correspondência
							Email: borisovdi@yandex.ru
				                					                																			                												                	Rússia, 							Ufa						
R. Suleimanov
Ufa University of Science and Technologies
														Email: radimsul@mail.ru
				                					                																			                												                	Rússia, 							Ufa						
Bibliografia
- Sanchez-Palencia E.. Non-homogeneous media and vibration theory. New York: Springer, 1980. 409 pp.
- Олейник О.А., Иосифьян Г.А., Шамаев А.С. Математические задачи теории сильно неоднородных упругих сред. М.: Изд-во МГУ, 1990. 312 с.
- Беляев А.Г., Михеев А.Г., Шамаев А.С. // Ж. вычисл. матем. матем. физ. 1992. Т. 32. № 8. С. 1258–1272.
- Чечкин Г.А., Акимова Е.А., Назаров С.А. // Доклады РАН. 2001. Т. 380. № 4. С. 439–442.
- Грушин В.В., Доброхотов С.Ю. // Матем. заметки. 2014. Т. 95. № 3. С. 359–375.
- Козлов В.А., Назаров С.А. // Алг. ан. 2010. Т. 22. № 6. С. 127–184.
- Пастухова С.Е. // Дифф. уравн. 2001. Т. 37. № 9. С. 1216–1222.
- Amirat Y., Bodart O., Chechkin G.A., Piatnitski A.L. // Stoch. Process. Appl. 2011. Т. 121. № 1. С. 1–23.
- Arrieta J., Brushi S. // Discr. Cont. Dyn. Syst. Ser. B. 2010. Vol. 14. No. 2. P. 327–351.
- Chechkin G.A., Friedman A., Piatnitski A.L. // J. Math. Anal. Appl. 1999. Vol. 231. No. 1. P. 213–234.
- Jäger W., Mikelić A. // Comm. Math. Phys. 2003. Vol. 232. No. 3. P. 429–455.
- Myong-Hwan Ri // Preprint: arXiv: 1311.0977. 2013.
- Neuss N., Neuss-Radu M., Mikelić A. // Applic. Anal. 2006. Vol. 85. No. 5. P. 479–502.
- Borisov D., Cardone G., Faella L., Perugia C. // J. Diff. Equat. 2013. Vol. 255. No. 12. P. 4378–4402.
- Борисов Д.И. // Пробл. матем. ан. 2022. Вып. 116. С. 69–84.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 







