Novel Catalysts Based on Magnesium, Aluminum, Nickel and Cobalt Hydroxo Salts for the Carbon Dioxide Conversion of Biogenic Alcohols to Hydrogen-Containing Gases
- Авторлар: Dedov A.G.1,2, Loktev A.S.1,2, Chibrikova D.A.1
-
Мекемелер:
- Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences
- Gubkin Russian State University of Oil and Gas
- Шығарылым: Том 521, № 2 (2025)
- Беттер: 32-41
- Бөлім: CHEMISTRY
- URL: https://rjpbr.com/2686-9535/article/view/686900
- DOI: https://doi.org/10.31857/S2686953525020058
- EDN: https://elibrary.ru/IPFIUL
- ID: 686900
Дәйексөз келтіру
Аннотация
Catalysts based on alumomagnesium hydroxo salts of hydrotalcite type containing nickel and cobalt ions have been used for the first time for carbon dioxide conversion of biogenic alcohols – ethanol and isobutanol – into hydrogen-containing gases (a mixture of hydrogen and carbon monoxide). At the optimum temperatures of 800–900°C, the hydrogen yield in the conversion of ethanol reaches 77–97%, in the conversion of isobutanol – 80–89%.
Негізгі сөздер
Толық мәтін

Авторлар туралы
A. Dedov
Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences; Gubkin Russian State University of Oil and Gas
Email: al57@rambler.ru
Academician of the RAS
Ресей, Moscow; MoscowA. Loktev
Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences; Gubkin Russian State University of Oil and Gas
Хат алмасуға жауапты Автор.
Email: al57@rambler.ru
Ресей, Moscow; Moscow
D. Chibrikova
Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences
Email: al57@rambler.ru
Ресей, Moscow
Әдебиет тізімі
- Liew W.M., Ainirazali N. // Energy Convers. Manage. 2025. V. 326. 119463. https://doi.org/10.1016/j.enconman.2024.119463
- Dedov A.G., Karavaev A.A., Loktev A.S., Osipov A.K. // Petrol. Chem. 2021. V. 61. P. 1139–1157. https://doi.org/10.1134/S0965544121110165
- Zlotin S.G., Egorova K.S., Ananikov V.P., Akulov A.A., Varaksin M.V., Chupakhin O.N., Charushin V.N., Bryliakov K.P., Averin A.D., Beletskaya I.P., Dolengovski E.L., Budnikova Yu.H., Sinyashin O.G., Gafurov Z.N., Kantyukov A.O., Yakhvarov D.G., Aksenov A.V., Elinson M.N., Nenajdenko V.G., Chibiryaev A.M., Nesterov N.S., Kozlova E.A., Martyanov O.N., Balova I.A., Sorokoumov V.N., Guk D.A., Beloglazkina E.K., Lemenovskii D.A., Chukicheva I.Yu., Frolova L.L., Izmest'ev E.S., Dvornikova I.A., Popov A.V., Kutchin A.V., Borisova D.M., Kalinina A.A., Muzafarov A.M., Kuchurov I.V., Maximov A.L., Zolotukhina A.V. // Russ. Chem. Rev. 2023. V. 92. № 12. RCR5104. https://doi.org/10.59761/RCR5104
- Aziz M.A.A., Setiabudi H.D., Teh L.P., Annuar N.H.R., Jalil A.A. // J. Taiwan Inst. Chem. Eng. 2019. V. 101. P. 139–158. https://doi.org/10.1016/j.jtice.2019.04.047
- Wang W., Wang Y. // Int. J. Hydrogen Energy. 2009. V. 34. P. 5382–5389. https://doi.org/10.1016/j.ijhydene.2009.04.05
- Bej B., Bepari S., Pradhan N.C., Neogi S. // Catal. Today. 2017. V. 291. P. 58–66. https://doi.org/10.1016/j.cattod.2016.12.010
- Arapova M., Smal E., Bespalko Yu., Fedorova V., Valeev K., Cherepanova S., Ischenko A., Sadykov V., Simonov M. // Int. J. Hydrogen Energy. 2021. V. 46. P. 39236–39250. https://doi.org/10.1016/j.ijhydene.2021.09.197
- Ramkiran A., Vo D.-V.N., Mahmud M.S. // Int. J. Hydrogen Energy. 2021. V. 46. P. 24845–24854. https://doi.org/10.1016/j.ijhydene.2021.03.144
- Wang M., Li F., Dong J., Lin X., Liu X., Wang D., Cai W. // J. Environ. Chem. Eng. 2022. V. 10. 107892. https://doi.org/10.1016/j.jece.2022.107892
- Zhukova A., Fionov Yu., Semenova S., Khaibullin S., Chuklina S., Maslakov K., Zhukov D., Isaikina O., Mushtakov A., Fionov A. // J. Phys. Chem. C. 2024. V. 128. P. 20177–20194. https://doi.org/10.1021/acs.jpcc.4c07213
- Wang M., Li T., Tian Y., Zhang J., Cai W. // Catal. Lett. 2024. V. 154. P. 3829–3838. https://doi.org/10.1007/s10562-024-04607-z
- Li F., Wang M., Zhang J., Lin X., Wang D., Cai W. // Appl. Catal. A. 2022. V. 638. 118605. https://doi.org/10.1016/j.apcata.2022.118605
- Dhanala V., Maity S.K., Shee D. // RSC Adv. 2015. V. 5. P. 52522–52532. https://doi.org/10.1039/C5RA03558A
- Dhanala V., Maity S.K., Shee D. // RSC Adv. 2013. V. 3. P. 24521–24529. https://doi.org/10.1039/C3RA44705G
- Lee I.C., Clair J.G.St., Gamson A.S. // Int. J. Hydrogen Energy. 2012. V. 37. P. 1399–1408. https://doi.org/10.1016/j.ijhydene.2011.09.121
- Chakrabarti R., Kruger J.S., Hermann R.J., Schmidt L.D. // RSC Adv. 2012. V. 2. P. 2527–2533. https://doi.org/10.1039/C2RA01348G
- Dhanala V., Maity S.K., Shee D. // J. Ind. Eng. Chem. 2015. V. 27. P. 153–163. https://doi.org/10.1016/j.jiec.2014.12.029
- Kruger J.S., Chakrabarti R., Hermann R.J., Schmidt L.D. // Appl. Catal. A. 2012. V. 411–412. P. 87–94. https://doi.org/10.1016/j.apcata.2011.10.023
- Sharma M.V.P., Akyurtlu J.F., Akyurtlu A. // Int. J. Hydrogen Energy. 2015. V. 40. P. 13368–13378. https://doi.org/10.1016/j.ijhydene.2015.07.113
- Moiseev I.I., Loktev A.S., Shlyakhtin O.A., Mazo G.N., Dedov A.G. // Petrol. Chem. 2019. V. 59. Suppl. 1. P. S1–S20. https://doi.org/10.1134/S0965544119130115
- Dedov A.G., Loktev A.S., Danilov V.P., Krasnobaeva O.N., Nosova T.A., Mukhin I.E., Baranchikov A.E., Yorov Kh.E., Bykov M.A., Moiseev I.I. // Petrol. Chem. 2020. V. 60. P. 194–203. https://doi.org/10.1134/S0965544120020048
- Qiu Y., Chen J., Zhang J. // Front. Chem. Eng. China. 2007. V. 1. P. 167–171. https://doi.org/10.1007/s11705-007-0031-7
- Krasnobaeva O.N., Belomestnykh I.P., Nosova T.A., Kondakov D.F., Elizarova T.A., Danilov V.P. // Russ. J. Inorg. Chem. 2015. V. 60. № 4. P. 409–414. https://doi.org/10.1134/S0036023615040099
- de Vasconcelos B.R., Minh D.P., Lyczko N., Phan T.S., Sharrock P., Nzihou A. // Fuel. 2018. V. 226. P. 195–203. https://doi.org/10.1016/j.fuel.2018.04.017
- Yuvasravana R., George P.P., Devanna N. // Inter. J. Innovative Res. Sci. Eng. Technol. 2017. V. 6. P. 11256–11265. https://doi.org/10.15680/IJIRSET.2017.0606208
Қосымша файлдар
