SINGLE-, DOUBLE- AND MULTI-WALLED CARBON NANOTUBES AS ELECTRICALLY CONDUCTIVE ADDITIVES IN LITHIUM-ION BATTERY CATHODES
- Authors: Babkin A.V.1, Kubarkov A.V.1, Drozhzhin O.A.1, Urvanov S.A.2, Filimonenkov I.S.2, Tkachev A.G.3, Mordkovich V.Z.2, Sergeyev V.G.1, Antipov E.V.1,4
- 
							Affiliations: 
							- Department of Chemistry, Lomonosov Moscow State University
- Technological Institute for Superhard and Novel Carbon Materials
- Tambov State Technical University
- Skolkovo Institute of Science and Technology
 
- Issue: Vol 508, No 1 (2023)
- Pages: 26-34
- Section: CHEMISTRY
- URL: https://rjpbr.com/2686-9535/article/view/651989
- DOI: https://doi.org/10.31857/S268695352260074X
- EDN: https://elibrary.ru/EWASMU
- ID: 651989
Cite item
Abstract
The paper presents a comparative study of the characteristics of lithium iron phosphate positive electrodes with various types of commercially available carbon nanotubes – single-walled (SWCNT), double-walled (DWCNT) and multi-walled (MWCNT). Electrochemical characteristics of the cathode materials were investigated using electrochemical impedance spectroscopy and galvanostatic charge/discharge measurements. Cyclic stability at various current densities was estimated. The best electrochemical characteristics are exhibited by cathode materials with SWCNT (advantage over DWCNT at discharge rates higher than 10C) and DWCNT (advantage over SWCNT during prolonged cycling). During cycling at a current density of 1C, the greatest loss of capacity was demonstrated by the MWCNT-based electrode. At the same time, the electrodes with SWCNT and DWCNT demonstrated satisfactory capacity retention after 50 charge/discharge cycles: over 94 and over 98%, respectively.
About the authors
A. V. Babkin
Department of Chemistry, Lomonosov Moscow State University
							Author for correspondence.
							Email: A.V.Babkin93@yandex.ru
				                					                																			                												                								Russian, 119991, Moscow						
A. V. Kubarkov
Department of Chemistry, Lomonosov Moscow State University
														Email: evgeny.antipov@gmail.com
				                					                																			                												                								Russian, 119991, Moscow						
O. A. Drozhzhin
Department of Chemistry, Lomonosov Moscow State University
														Email: evgeny.antipov@gmail.com
				                					                																			                												                								Russian, 119991, Moscow						
S. A. Urvanov
Technological Institute for Superhard and Novel Carbon Materials
														Email: evgeny.antipov@gmail.com
				                					                																			                												                								Russian, 108840, Troitsk, Moscow						
I. S. Filimonenkov
Technological Institute for Superhard and Novel Carbon Materials
														Email: evgeny.antipov@gmail.com
				                					                																			                												                								Russian, 108840, Troitsk, Moscow						
A. G. Tkachev
Tambov State Technical University
														Email: evgeny.antipov@gmail.com
				                					                																			                												                								Russian, 392000, Tambov						
V. Z. Mordkovich
Technological Institute for Superhard and Novel Carbon Materials
														Email: evgeny.antipov@gmail.com
				                					                																			                												                								Russian, 108840, Troitsk, Moscow						
V. G. Sergeyev
Department of Chemistry, Lomonosov Moscow State University
														Email: evgeny.antipov@gmail.com
				                					                																			                												                								Russian, 119991, Moscow						
E. V. Antipov
Department of Chemistry, Lomonosov Moscow State University; Skolkovo Institute of Science and Technology
							Author for correspondence.
							Email: evgeny.antipov@gmail.com
				                					                																			                												                								Russian, 119991, Moscow; Russian, 121205, Moscow						
References
- Natarajan S., Aravindan V. // ACS Energy Lett. 2018. V. 3. № 9. P. 2101–2103. https://doi.org/10.1021/acsenergylett.8b01233
- Heidari E.K., Kamyabi-Gol A., Sohi M.H., Ataie A. // J. Ultrafine Grained Nanostruct. Mater. 2018. V. 51. № 1. P. 1–12. https://doi.org/10.22059/JUFGNSM.2018.01.01
- Satyavani T.V.S.L, Ramya Kiran B., Rajesh Kumar V., Srinivas Kumar A., Naidu S.V. // Eng. Sci. Technol., Int. J. 2016. V. 19. № 1. P. 40–44. https://doi.org/10.1016/j.jestch.2015.05.011
- Shih J., Lin G., James Li Y., Tai-Feng Hung, Rajan J., Karuppiah C., Chun-Chen Y. // Electrochim. Acta. 2022. V. 419. 140356. https://doi.org/10.1016/j.electacta.2022.140356
- Rajoba S.J., Jadhav L.D., Patil P.S., Tyagi D.K., Varma S., Wani B.N. // J. Electron. Mater. 2017. V. 46. P. 1683–1691. https://doi.org/10.1007/s11664-016-5212-z
- Zhou X., Wang F., Zhu Y., Liu Z. // J. Mater. Chem. 2011. V. 21. P. 3353–3358. https://doi.org/10.1039/C0JM03287E
- Liu T., Sun S., Zhao Z., Li X., Sun X., Cao F., Wu J. // RSC Adv. 2017. V. 7. P. 20882–20887. https://doi.org/10.1039/C7RA02155K
- Qi X., Blizanac B., DuPasquier A., Miodrag Ol., Li J., Winter M. // Carbon. 2013. V. 64. P. 334–340. https://doi.org/10.1016/j.carbon.2013.07.083
- Ji X., Mu Y., Liang J., Jiang T., Zeng J., Lin Z., Lin Y., Yu J. // Carbon. 2021. V. 176. P. 21–30. https://doi.org/10.1016/j.carbon.2021.01.128
- Juarez-Yescas C., Ramos-Sánchez G., González I. // J. Solid State Electrochem. 2018. V. 22. P. 3225–3233. https://doi.org/10.1007/s10008-018-4021-0
- Chen Y., Zhang H., Chen Y., Qin G., Lei X., Liu L. // Mater. Sci. Forum. 2018. V. 913. P. 818–830. https://doi.org/10.4028/www.scientific.net/msf.913.818
- Fiyadh S.S., AlSaadi M.A., Jaafar W.Z., AlOmar M.Kh., Fayaed S.S., Mohd N.S., Hin L.S., El-Shafie A. // J. Cleaner Prod. 2019. V. 230. P. 783–793. https://doi.org/10.1016/j.jclepro.2019.05.154
- Zhang R., Zhang Y., Zhang Q., Xie H., Qian W., Wei F. // ACS Nano. 2013.V. 7. № 7. P. 6156–6161. https://doi.org/10.1021/nn401995z
- Garg A., Chalak H.D., Belarbi M-O., Zenkour A.M., Sahoo R. // Compos. Struct. 2021. V. 272 P. 114234. https://doi.org/10.1016/j.compstruct.2021.114234
- Zhang S., Hao A., Nguyen N., Oluwalowo A., Liu Z., Dessureault Y., Gyu J.P., Liang R. // Carbon. 2019. V. 144. P. 628–638. https://doi.org/10.1016/j.carbon.2018.12.091
- Li J., Ma P., Chow W., To C., Tang B. Kim J.-K. // Adv. Funct. Mater. 2007. V. 17. P. 3207–3215. https://doi.org/10.1002/adfm.200700065
- Wang K., Wu Y., Luo S., He X., Wang J., Jiang K., Fan S. // J. Power Sources. 2013. V. 233. P. 209–215. https://doi.org/10.1016/j.jpowsour.2013.01.102
- Belharouak I., Johnson C., Amine K. // Electrochem. Commun. 2005. V. 7. № 10. P. 983–988. https://doi.org/10.1016/j.elecom.2005.06.019
- Filimonenkov I.S., Urvanov S.A., Zhukova E.A., Karae-va A.R., Skryleva E.A., Mordkovich V.Z., Tsirlina G.A. // J. Electroanal. Chem. 2018. V. 827. P. 58–63. https://doi.org/10.1016/j.jelechem.2018.09.004
- Filimonenkov I.S., Urvanov S.A., Kazennov N.V., Tarelkin S.A., Tsirlina G.A., Mordkovich V.Z. // J. Appl. Electrochem. 2022. V. 52. P. 487–498. https://doi.org/10.1007/s10800-021-01652-z
- Meddings N., Heinrich M., Overney F., Lee J.S., Ruiz V., Napolitano E., Seitz S., Hinds G., Raccichini R., Gaberšček M., Park J. // J. Power Sources. 2020. V. 480. P. 228742. https://doi.org/10.1016/j.jpowsour.2020.228742
- Zhao N., Zhi X., Wang L., Liu Y., Liang G. // J. Alloys Compd. 2015. V. 645. P. 301–308. https://doi.org/10.1016/j.jallcom.2015.05.097
- Jin B., Gu H.B., Zhang W., Park K.H., Sun G. // J. Solid State Electrochem. 2008. V. 12. P. 1549–1554. https://doi.org/10.1007/s10008-008-0509-3
- Wei X., Guan Y., Zheng X., Zhu Q., Shen J., Qiao N., Zhou S., Xu B. // Appl. Surf. Sci. 2018, V. 440. P. 748–754. https://doi.org/10.1016/j.apsusc.2018.01.201
- Tian R., Alcala N., O’Neill S.J., Horvath D.V., Coelho J., Griffin A.J., Zhang Y., Nicolosi V., O`Dwyer C., Cole-man J.N. // ACS Appl. Energy Mater. 2020. V. 3. № 3. P. 2966–2974. https://doi.org/10.1021/acsaem.0c00034
- Dreyer W., Jamnik J., Guhlke C., Huth R., Moskon J., Gaberscer M. // Nat. Mater. 2010. V. 9. P. 448–453. https://doi.org/10.1038/nmat2730
- Fu Y., Wei Q., Zhang G., Zhong Y., Moghimian N., Tong X., Sun S. // Materials. 2019. V. 12. P. 842. https://doi.org/10.3390/ma12060842
- Zeng H., Ji X., Tsai F., Zhang Q., Jiang T., Li R. K.Y., Shi H., Luan S., Shi D. // Solid State Ionics. 2018. V. 320. P. 92–99. https://doi.org/10.1016/j.ssi.2018.02.040
- Li J., Ma P., Chow W., To C., Tang B., Kim J.-K. // Adv. Funct. Mater. 2007. V.17. P. 3207–3215. https://doi.org/10.1002/adfm.200700065
- Liu X-M., Huang D.Z., Oh S.-W., Zhang B., Ma P.-C., Yuen M.M.F., Kim J.‑K. // Compos. Sci. Technol. 2012. V. 72. № 2. P. 121–144. https://doi.org/10.1016/j.compscitech.2011.11.019
- Napolskiy F., Avdeev M., Yerdauletov M., Ivankov O., Bocharova S., Ryzhenkova S., Kaparova B., Mirono-vich K., Burlyaev D., Krivchenko V. // Energy Technol. 2020. V. 8. № 6. P. 2000146. https://doi.org/10.1002/ente.202000146
- Yoo J.-K., Oh Y., Park T., Lee K.E., Um M.-K., Yi J.-W. // Energy Technol. 2019. V. 7. № 5. 1800845. https://doi.org/10.1002/ente.201800845
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 

 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					





