Reactivity of New Monomers of the Polyurethanes Green Chemistry, the Reaction Mechanism, and the Medium Effect
- Authors: Zabalov M.V.1, Levina M.A.1, Krasheninnikov V.G.1, Tiger R.P.1
- 
							Affiliations: 
							- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
 
- Issue: Vol 65, No 4 (2023)
- Pages: 286-294
- Section: ХИМИЧЕСКИЕ ПРЕВРАЩЕНИЯ
- URL: https://rjpbr.com/2308-1139/article/view/650882
- DOI: https://doi.org/10.31857/S2308113923700511
- EDN: https://elibrary.ru/QORWFU
- ID: 650882
Cite item
Abstract
The influence of the substituents inductive effect and the proton-donor OH group in the substituted cyclocarbonates differing in the alkyl chain length on the activation barrier of their aminolysis reaction, which underlies the process of urethane formation without the participation of isocyanates, has been studied. Account for the solvent molecules has allowed quantitative interpretation of the process regularities. Kinetics of the model aminolysis reaction of a series of monomers in DMSO has been investigated.
About the authors
M. V. Zabalov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
														Email: zabalov@chph.ras.ru
				                					                																			                												                								119991, Moscow, Russia						
M. A. Levina
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
														Email: zabalov@chph.ras.ru
				                					                																			                												                								119991, Moscow, Russia						
V. G. Krasheninnikov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
														Email: zabalov@chph.ras.ru
				                					                																			                												                								119991, Moscow, Russia						
R. P. Tiger
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
							Author for correspondence.
							Email: zabalov@chph.ras.ru
				                					                																			                												                								119991, Moscow, Russia						
References
- Saunders J.H., Frisch K.C. Polyurethanes – Chemistry and Technology. New York; London: Interscience Publ., 1962. V. 16. Part I.
- Tiger R.P. // Polymer Science B. 2004. V. 46. № 5–6. P. 142.
- Guan J., Song Y., Lin Y., Yin X., Zuo M., Zhao Y., Tao X., Zheng Q. // Ind. Eng. Chem. Res. 2011. V. 50. № 11. P. 6517.
- Figovsky O., Shapovalov L., Leykin A., Birukova O., Po-tashnikova R. // PU Magazine. 2013. V. 10. № 4. P. 1.
- Nohra B., Candy L., Blanco J.-F., Guerin C., Raoul Y., Mouloungui Z. // Macromolecules. 2013. V. 46. № 10. P. 3771.
- Blattmann H., Fleischer M., Bahr M., Mulhaupt R. // Macromol. Rapid Comm. 2014. V. 35. № 14. P. 1238.
- Rokicki G., Parzuchowski P.G., Mazurek M. // Polym. Adv. Technol. 2015. V. 26. № 7. P. 707.
- Maisonneuve L., Lamarzelle O., Rix E., Grau E., Cramail H. // Chem. Rev. 2015. V. 115. P. 12407.
- Cornille A., Auvergne R., Figovsky O., Boutevin B., Caillol S. // Eur. Polym. J. 2017. V. 87. P. 535.
- Błażek K., Datta J. // Crit. Rev. Environ. Sci. Technol. 2019. V. 49. № 3. P. 173.
- Carre C., Ecochard Y., Caillol S., Averous L. // ChemSusChem. 2019. V. 12. № 15. P. 3410.
- Ecochard Y., Caillol S. // Eur. Polym. J. 2020. V. 137. 109915.
- Lambeth R.H. // Polym. Int. 2020. V. 70. P. 696.
- Tiger R.P., Zabalov M.V., Levina M.A. // Polymer Science C. 2021. V. 63. № 2. P. 113.
- Gomez-Lopez A., Elizalde F., Calvo I., Sardon H. // Chem. Comm. 2021. V. 57. № 92. P. 12254.
- Brzeska J., Piotrowska-Kirschling A.A. // Processes. 2021. V. 9. P. 1929.
- Bizet B., Grau E., Asua J.M., Cramail H. // Macromol. Chem. Phys. 2022. V. 223. № 13. 2100437.
- Kaur R., Singh P., Tanwar S., Varshney G., Yadav S. // Macromolecules. 2022. V. 2. № 3. P. 284.
- Figovsky O.L., Bol’shakov O.I., Vikhareva I.N. Nonisocyanate Polyurethanes: Green Solutions. Chelyabinsk: SUSU Publ., 2023.
- Catalá J., Guerra I., García-Vargas J.M., Ramos M.J., García M.T., Rodríguez J.F. // Polymers. 2023. V. 15. № 6. P. 1589.
- Levina M.A., Zabalov M.V., Krasheninnikov V.G., Tiger R.P. // Polymer Science B. 2018. V. 60. № 5. P. 563.
- Zabalov M.V., Levina M.A., Krasheninnikov V.G., Tiger R.P. // Russ. Chem. Bull., Int. Ed. 2014. V. 63. № 8. P. 1740.
- Levina M.A., Krasheninnikov V.G., Zabalov M.V., Tiger R.P. // Polymer Science B. 2014. V. 56. № 2. P. 139.
- Levina M.A., Zabalov M.V., Krasheninnikov V.G., Tiger R.P. // Polymer Science B. 2017. V. 59. № 5. P. 497.
- Zabalov M.V., Levina M.A., Tiger R.P. // Kinet. Catal. 2020. V. 61. № 5. P. 721.
- Zabalov M.V., Levina M.A., Krasheninnikov V.G., Tiger R.P. // Reac. Kinet. Mech. Cat. 2020. V. 129. № 1. P. 65.
- Zabalov M.V., Levina M.A., Tiger R.P. // Polymer Science B. 2020. V. 62. № 5. P. 457.
- Zabalov M.V., Tiger R.P. // Theor. Chem. Acc. 2017. V. 136. P. 95.
- Quienne B., Poli R., Pinaud J., Caillol S. // Green Chem. 2021. V. 23. № 4. P. 1678.
- Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. № 18. P. 3865.
- Ernzerhof M., Scuseria G.E. // J. Chem. Phys. 1999. V. 110. № 11. P. 5029.
- Laikov D.N. // Chem. Phys. Lett. 1997. V. 281. № 1–3. P. 151.
- Laikov D.N., Ustynyuk Y.A. // Russ. Chem. Bull., Int. Ed. 2005. V. 54. № 3. P. 820.
- Zabalov M.V., Tiger R.P. // Russ. Chem. Bull. Int. Ed. 2016. V. 65. № 3. P. 631.
- Caldeweyher E., Bannwarth C., Grimme S. // J. Chem. Phys. 2017. V. 147. № 3. 034112.
- Caldeweyher E., Ehlert S., Hansen A., Neugebauer H., Spicher S., Bannwarth C., Grimme S. // J. Chem Phys. 2019. V. 150. № 15. 154122.
- Caldeweyher E., Mewes J.-M., Ehlert S., Grimme S. // Phys. Chem. Chem. Phys. 2020. V. 22. № 16. P. 8499.
- Zabalov M.V., Tiger R.P., Berlin A.A. // Dokl. Chem. 2011. V. 441. Pt 2. P. 355.
- Zabalov M.V., Tiger R.P., Berlin A.A. // Russ. Chem. Bull., Int. Ed. 2012. V. 61. P. 518.
- Alves M., Mereau R., Grignard B., Detrembleur C., Jerome C., Tassaing T. // RSC Adv. 2017. V. 7. № 31. P. 18993.
- Levina M.A., Zabalov M.V., Gorshkov A.V., Shashkova V.T., Krasheninnikov V.L., Tiger R.P., Miloslavskii D.G., Pridatchenko M.L. // Polymer Science B. 2019. V. 61. № 5. P. 540.
- Mizuno K., Imafuji S., Ochi T., Ohta T., Maeda S. // J. Phys. Chem. B. 2000. V. 104. № 47. P. 11001.
- Li Q., Wu G., Yu Z. // J. Am. Chem. Soc. 2006. V. 128. № 5. P. 1438.
- Li Q., An X., Gong B., Cheng J. // Spectrochim. Acta A. 2008. V. 69. № 1. P. 211.
- Li Q., An X., Gong B., Cheng J. // Vib. Spectrosc. 2008. V. 46. № 1. P. 28.
- Zhang L., Wang Y., Xu Z., Li H. // J. Phys. Chem. B. 2009. V. 113. № 17. P. 5978.
- Noack K., Kiefer J., Leipertz A. // ChemPhysChem. 2010. V. 11. № 3. P. 630.
- Venkataramanan N.S., Suvitha A. // J. Mol. Graph. Model. 2018. V. 81. P. 50.
- Mrázková E., Hobza P. // J. Phys. Chem. A. 2003. V. 107. № 7. P. 1032.
- Venkataramanan N.S. // Int. J. Quant. Chem. 2012. V. 112. № 13. P. 2599.
- Venkataramanan N.S. // J. Mol. Model. 2016. V. 22. № 7. Art. 151.
- Venkataramanan N.S., Suvitha A., Kawazoe Y. // J. Mol. Liq. 2018. V. 249. P. 454.
- Li X., Liu L., Schlegel H.B. // J. Am. Chem. Soc. 2002. V. 124. № 32. P. 9639.
- Joseph J., Jemmis E.D. // J. Am. Chem. Soc. 2007. V. 129. № 15. P. 4620.
- Mo Y., Wang C., Guan L., Braïda B., Hiberty P.C., Wu W. // Chem. Eur. J. 2014. V. 20. № 27. P. 8444.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					






