COVID-19 and trace elements (literature review)

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The whole world has been living in the conditions of the COVID-19 pandemic caused by the SARS-CoV-2 virus for more than 2 years. Despite the unprecedented measures aimed at finding new means of prevention and treatment, the development and implementation of vaccines, COVID-19 continues to be a significant medical and social problem. This is due to the peculiarity of SARS-CoV-2 to constant changes in the virus as a result of mutations and the formation of new strains. It affects the effectiveness of vaccination and treatment, necessitating preventive measures, primarily aimed at maintaining the normal functioning of the immune system that protects the host from various pathogens, including viruses. An important role in the state of the immune system is played by some micronutrients, which include zinc, selenium, iron and copper. Zinc and selenium have pronounced immunoregulatory, antioxidant and antiviral properties, iron is necessary for the growth and development of some cells of the immune system, and copper, in addition to its antiviral effect, reduces the risk of secondary infection in viral diseases. At the same time, according to the literature, more than 2 billion people in the world suffer from micronutrient deficiencies. In addition, there is often a combined deficiency of minerals, which necessitates its diagnosis and correction. Most of the studies we analyzed emphasize the importance of using micronutrients in people at risk, as well as in patients at the very beginning of the disease, in order to strengthen the immune system in the condition of a laboratory-confirmed deficiency.

Full Text

Restricted Access

About the authors

Alexei O. Romanov

Yevdokimov Moscow State University of Medicine and Dentistry

Email: alexseu23ru@gmail.com
ORCID iD: 0000-0002-5085-4587
SPIN-code: 2974-7992
Russian Federation, Moscow

Maisiyat М. Sharipova

Yevdokimov Moscow State University of Medicine and Dentistry

Email: maisiyat@bk.ru
ORCID iD: 0000-0001-7452-1122
SPIN-code: 8438-6386

MD, Cand. Sci. (Med.)

Russian Federation, Moscow

Maria V. Ivkina

Yevdokimov Moscow State University of Medicine and Dentistry

Author for correspondence.
Email: terekhova_m@mail.ru
ORCID iD: 0000-0001-5261-3552
SPIN-code: 7054-2171

MD, Cand. Sci. (Med.)

Russian Federation, Moscow

Anna N. Arkhangelskaya

Yevdokimov Moscow State University of Medicine and Dentistry

Email: cattiva@list.ru
ORCID iD: 0000-0002-0792-6194
SPIN-code: 4434-5712

MD, Cand. Sci. (Med.), Associate Professor

Russian Federation, Moscow

Konstantin G. Gurevich

Yevdokimov Moscow State University of Medicine and Dentistry

Email: kgurevich@mail.ru
ORCID iD: 0000-0002-7603-6064
SPIN-code: 4344-3045

MD, Dr. Sci. (Med.), Professor

Russian Federation, Moscow

References

  1. Alexander J, Tinkov A, Strand TA, et al. Early nutritional interventions with zinc, selenium and vitamin D for raising anti-viral resistance against progressive COVID-19. Nutrients. 2020;12(8):E2358. doi: 10.3390/nu12082358
  2. Calder PC. Nutrition, immunity and COVID-19. BMJ Nutr Prev Health. 2020;3(1):74–92. doi: 10.1136/bmjnph-2020-000085
  3. Rahman MT, Idid SZ. Can Zn be a critical element in COVID-19 treatment? Biol Trace Elem Res. 2021;199(2):550–558. doi: 10.1007/s12011-020-02194-9
  4. WHO Coronavirus Disease (COVID-19) Dashboard [Internet]. WHO; 2022 [cited 2022 June 10]. Available from: https://covid19.who.int/.
  5. Esposito S, Noviello S, Pagliano P. Update on treatment of COVID-19: ongoing studies between promising and disappointing results. Infez Med. 2020;28(2):198–211.
  6. Nedjimi B. Can trace element supplementations (Cu, Se, and Zn) enhance human immunity against COVID-19 and its new variants? Beni Suef Univ J Basic Appl Sci. 2021;10(1):33. doi: 10.1186/s43088-021-00123-w
  7. Joachimiak MP. Zinc against COVID-19? Symptom surveillance and deficiency risk groups. PLoS Negl Trop Dis. 2021;15(1):e0008895. doi: 10.1371/journal.pntd.0008895
  8. Junaid K, Ejaz H, Abdalla AE, et al. Effective immune functions of micronutrients against SARS-CoV-2. Nutrients. 2020;12(10):2992. doi: 10.3390/nu12102992
  9. Jin P, Li J, Pan H, et al. Immunological surrogate endpoints of COVID-2019 vaccines: the evidence we have versus the evidence we need. Signal Transduct Target Ther. 2021;6(1):48. doi: 10.1038/s41392-021-00481-y
  10. Chu DK, Akl EA, Duda S, et al.; COVID-19 Systematic Urgent Review Group Effort (SURGE) study authors. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: A systematic review and meta-analysis. Lancet. 2020;395(10242):1973–1987. doi: 10.1016/S0140-6736(20)31142-9
  11. Iddir M, Brito A, Dingeo G, et al. Strengthening the immune system and reducing inflammation and oxidative stress through diet and nutrition: Considerations during the COVID-19 crisis. Nutrients. 2020;12(6):1562. doi: 10.3390/nu12061562
  12. Galmés S, Serra F, Palou A. Current state of evidence: influence of nutritional and nutrigenetic factors on immunity in the COVID-19 pandemic framework. Nutrients. 2020;12(9):2738. doi: 10.3390/nu12092738
  13. Gromova OA, Torshin IYu. The importance of zinc in maintaining the activity of antiviral innate immunity proteins: analysis of publications on COVID-19. Profilakticheskaya Meditsina. 2020;23(3):131–139. (In Russ). doi: 10.17116/profmed202023031131
  14. Fedele D, De Francesco A, Riso S, Collo A. Obesity, malnutrition, and trace element deficiency in the coronavirus disease (COVID-19) pandemic: An overview. Nutrition. 2021;81:111016. doi: 10.1016/j.nut.2020.111016
  15. Berger MM, Herter-Aeberli I, Zimmermann MB, et al. Strengthening the immunity of the Swiss population with micronutrients: A narrative review and call for action. Clin Nutr ESPEN. 2021;43:39–48. doi: 10.1016/j.clnesp.2021.03.012
  16. Calder PC, Carr AC, Gombart AF, Eggersdorfer M. Optimal nutritional status for a well-functioning immune system is an important factor to protect against viral infections. Nutrients. 2020;12(4):1181. doi: 10.3390/nu12041181
  17. Moghaddam A, Heller RA, Sun Q, et al. Selenium deficiency is associated with mortality risk from COVID-19. Nutrients. 2020;12(7):2098. doi: 10.3390/nu12072098
  18. Jothimani D, Kailasam E, Danielraj S, et al. COVID-19: Poor outcomes in patients with zinc deficiency. Int J Infect Dis. 2020;100:343–349. doi: 10.1016/j.ijid.2020.09.014
  19. Oyagbemi AA, Ajibade TO, Aboua YG, et al. Potential health benefits of zinc supplementation for the management of COVID-19 pandemic. J Food Biochem. 2021;45(2):e13604. doi: 10.1111/jfbc.13604
  20. Samad N, Sodunke TE, Abubakar AR, et al. The implications of zinc therapy in combating the COVID-19 global pandemic. J Inflamm Res. 2021;14:527–550. doi: 10.2147/JIR.S295377
  21. Delgado-Roche L, Mesta F. Oxidative stress as key player in severe acute respiratory syndrome coronavirus (SARS-CoV) infection. Arch Med Res. 2020;51(5):384–387. doi: 10.1016/j.arcmed.2020.04.019
  22. Bailey RL, West KP Jr, Black RE. The epidemiology of global micronutrient deficiencies. Ann Nutr Metab. 2015;66(Suppl. 2): 22–33. doi: 10.1159/000371618
  23. Maxfield L, Shukla S, Crane JS. Zinc Deficiency. Treasure Island (FL): StatPearls Publishing; 2022.
  24. Wessels I, Maywald M, Rink L. Zinc as a gatekeeper of immune function. Nutrients. 2017;9(12):1286. doi: 10.3390/nu9121286
  25. Chinni V, El-Khoury J, Perera M, et al. Zinc supplementation as an adjunct therapy for COVID-19: Challenges and opportunities. Br J Clin Pharmacol. 2021;87(10):3737–3746. doi: 10.1111/bcp.14826
  26. Wessels I, Rolles B, Rink L. The potential impact of zinc supplementation on COVID-19 pathogenesis. Front Immunol. 2020;11:1712. doi: 10.3389/fimmu.2020.01712
  27. Domingo JL, Marquès M. The effects of some essential and toxic metals/metalloids in COVID-19: A review. Food Chem Toxicol. 2021;152:112161. doi: 10.1016/j.fct.2021.112161
  28. Derwand R, Scholz M. Does zinc supplementation enhance the clinical efficacy of chloroquine/hydroxychloroquine to win today’s battle against COVID-19? Med Hypotheses. 2020;142:109815. doi: 10.1016/j.mehy.2020.109815
  29. Corrao S, Mallaci Bocchio R, Lo Monaco M, et al. Does evidence exist to blunt inflammatory response by nutraceutical supplementation during COVID-19 pandemic? An overview of systematic reviews of vitamin D, vitamin C, melatonin, and zinc. Nutrients. 2021;13(4):1261. doi: 10.3390/nu13041261
  30. Sattar Y., Connerney M., Rauf H., et al. Three cases of COVID-19 disease with colonic manifestations. Am J Gastroenterol. 2020;115(6):948–950. doi: 10.14309/ajg.0000000000000692
  31. Abdulateef DS, Rahman HS, Salih JM, et al. COVID-19 severity in relation to sociodemographics and vitamin D use. Open Med (Wars). 2021;16(1):591–609. doi: 10.1515/med-2021-0273
  32. Thomas S, Patel D, Bittel B, et al. Effect of high-dose zinc and ascorbic acid supplementation vs usual care on symptom length and reduction among ambulatory patients with SARS-CoV-2 infection: The COVID A to Z randomized clinical trial. JAMA Netw Open. 2021;4(2):e210369. doi: 10.1001/jamanetworkopen.2021.0369
  33. Dharmalingam K, Birdi A, Tomo S, et al. Trace elements as immunoregulators in SARS-CoV-2 and other viral infections. Indian J Clin Biochem. 2021;36(4):416–426. doi: 10.1007/s12291-021-00961-6
  34. Asl SH, Nikfarjam S, Majidi Zolbanin N, et al. Immunopharmacological perspective on zinc in SARS-CoV-2 infection. Int Immunopharmacol. 2021;96:107630. doi: 10.1016/j.intimp.2021.107630
  35. Huang Z, Rose AH, Hoffmann PR. The role of selenium in inflammation and immunity: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal. 2012;16(7):705–743. doi: 10.1089/ars.2011.4145
  36. Maggini S, Pierre A, Calder PC. Immune Function and Micronutrient Requirements Change over the Life Course. Nutrients. 2018;10(10):1531. doi: 10.3390/nu10101531
  37. Shreenath AP, Ameer MA, Dooley J. Selenium Deficiency. Treasure Island (FL): StatPearls Publishing; 2022.
  38. Jones GD, Droz B, Greve P, et al. Selenium deficiency risk predicted to increase under future climate change. Proc Natl Acad Sci U S A. 2017;114(11):2848–2853. doi: 10.1073/pnas.1611576114
  39. Bermano G, Méplan C, Mercer DK, Hesketh JE. Selenium and viral infection: are there lessons for COVID-19? Br J Nutr. 2021;125(6):618–627. doi: 10.1017/S0007114520003128
  40. Majeed M, Nagabhushanam K, Gowda S, Mundkur L. An exploratory study of selenium status in healthy individuals and in patients with COVID-19 in a south Indian population: The case for adequate selenium status. Nutrition. 2021;82:111053. doi: 10.1016/j.nut.2020.111053
  41. Im JH, Je YS, Baek J, et al. Nutritional status of patients with COVID-19. Int J Infect Dis. 2020;100:390–393. doi: 10.1016/j.ijid.2020.08.018
  42. Heller RA, Sun Q, Hackler J, et al. Prediction of survival odds in COVID-19 by zinc, age and selenoprotein P as composite biomarker. Redox Biol. 2021;38:101764. doi: 10.1016/j.redox.2020.101764
  43. Kieliszek M, Lipinski B. Selenium supplementation in the prevention of coronavirus infections (COVID-19). Med Hypotheses. 2020;143:109878. doi: 10.1016/j.mehy.2020.109878
  44. Jin Z, Du X, Xu Y, et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature. 2020;582(7811):289–293. doi: 10.1038/s41586-020-2223-y
  45. Zhang L, Lin D, Sun X, et al. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science. 2020;368(6489):409–412. doi: 10.1126/science.abb3405
  46. Habib HM, Ibrahim S, Zaim A, Ibrahim WH. The role of iron in the pathogenesis of COVID-19 and possible treatment with lactoferrin and other iron chelators. Biomed Pharmacother. 2021;136:111228. doi: 10.1016/j.biopha.2021.111228
  47. Akhtar S, Das JK, Ismail T, et al. Nutritional perspectives for the prevention and mitigation of COVID-19. Nutr Rev. 2021;79(3):289–300. doi: 10.1093/nutrit/nuaa063
  48. Wessling-Resnick M. Crossing the iron gate: why and how transferrin receptors mediate viral entry. Annu Rev Nutr. 2018;38:431–458. doi: 10.1146/annurev-nutr-082117-051749
  49. Haider BA, Spiegelman D, Hertzmark E, et al. Anemia, iron deficiency, and iron supplementation in relation to mortality among HIV-infected patients receiving highly active antiretroviral therapy in Tanzania. Am J Trop Med Hyg. 2019;100(6):1512–1520. doi: 10.4269/ajtmh.18-0096
  50. Gordeuk VR, Delanghe JR, Langlois MR, Boelaert JR. Iron status and the outcome of HIV infection: an overview. J Clin Virol. 2001;20(3):111–115. doi: 10.1016/s1386-6532(00)00134-7
  51. McDermid JM, Jaye A, Schim van der Loeff MF, et al. Elevated iron status strongly predicts mortality in West African adults with HIV infection. J Acquir Immune Defic Syndr. 2007;46(4):498–507. doi: 10.1097/qai.0b013e31815b2d4b
  52. Rawat R, Humphrey JH, Ntozini R, et al. Elevated iron stores are associated with HIV disease severity and mortality among postpartum women in Zimbabwe. Public Health Nutr 2009;12(9):1321–1329. doi: 10.1017/S136898000800390X
  53. Ersöz A, Yılmaz TE. The association between micronutrient and hemogram values and prognostic factors in COVID-19 patients: A single-center experience from Turkey. Int J Clin Pract. 2021;75(6):e14078. doi: 10.1111/ijcp.14078
  54. Richardson S, Hirsch JS, Narasimhan M, et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City Area. JAMA. 2020;323(20):2052–2059. doi: 10.1001/jama.2020.6775
  55. Chen T, Wu D, Chen H, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ. 2020;368:m1091. doi: 10.1136/bmj.m1091
  56. Pasricha SR, Tye-Din J, Muckenthaler MU, Swinkels DW. Iron deficiency. Lancet. 2021;397(10270):233–248. doi: 10.1016/S0140-6736(20)32594-0
  57. Kernan KF, Carcillo JA. Hyperferritinemia and inflammation. Int Immunol. 2017;29(9):401–409. doi: 10.1093/intimm/dxx031
  58. Sonnweber T, Boehm A, Sahanic S, et al. Persisting alterations of iron homeostasis in COVID-19 are associated with non-resolving lung pathologies and poor patients’ performance: a prospective observational cohort study. Respir Res. 2020;21(1):276. doi: 10.1186/s12931-020-01546-2
  59. Chaturvedi UC, Shrivastava R, Upreti RK. Viral infections and trace elements: a complex interaction. Curr Sci. 2004;87:1536–1554.
  60. Raha S, Mallick R, Basak S, Duttaroy AK. Is copper beneficial for COVID-19 patients? Med Hypotheses. 2020;142:109814. doi: 10.1016/j.mehy.2020.109814
  61. Lee JK, Ha JH, Collins JF. Dietary iron intake in excess of requirements impairs intestinal copper absorption in Sprague Dawley rat dams, causing copper deficiency in suckling pups. Biomedicines. 2021;9(4):338. doi: 10.3390/biomedicines9040338
  62. Zeng HL, Yang Q, Yuan P, et al. Associations of essential and toxic metals/metalloids in whole blood with both disease severity and mortality in patients with COVID-19. FASEB J. 2021;35(3):e21392. doi: 10.1096/fj.202002346RR
  63. Pincemail J, Cavalier E, Charlier C, et al. Oxidative stress status in COVID-19 patients hospitalized in intensive care unit for severe pneumonia. A Pilot Study. Antioxidants (Basel). 2021;10(2):257. doi: 10.3390/antiox10020257
  64. Chen J, Jiang Y, Shi H, et al. The molecular mechanisms of copper metabolism and its roles in human diseases. Pflugers Arch. 2020;472(10):1415–1429. doi: 10.1007/s00424-020-02412-2
  65. Li L, Yang X. The essential element manganese, oxidative stress, and metabolic diseases: Links and interactions. Oxid Med Cell Longev. 2018:7580707. doi: 10.1155/2018/7580707
  66. Fooladi S, Matin S, Mahmoodpoor A. Copper as a potential adjunct therapy for critically ill COVID-19 patients. Clin Nutr ESPEN. 2020;40:90–91. doi: 10.1016/j.clnesp.2020.09.022
  67. Anuk AT, Polat N, Akdas S, et al. The relation between trace element status (zinc, copper, magnesium) and clinical outcomes in COVID-19 infection during pregnancy. Biol Trace Elem Res. 2021;199(10):3608–3617. doi: 10.1007/s12011-020-02496-y
  68. Besold AN, Shanbhag V, Petris MJ, Culotta VC. Ceruloplasmin as a source of Cu for a fungal pathogen. J Inorg Biochem. 2021;219:111424. doi: 10.1016/j.jinorgbio.2021.111424
  69. Zeng HL, Zhang B, Wang X, et al. Urinary trace elements in association with disease severity and outcome in patients with COVID-19. Environ Res. 2021;194:110670. doi: 10.1016/j.envres.2020.110670
  70. Skalny AV, Timashev PS, Aschner M, et al. Serum zinc, copper, and other biometals are associated with COVID-19 severity markers. Metabolites. 2021;11(4):244. doi: 10.3390/metabo11040244
  71. Patil S, Us VR, Arakeri G, et al. Does Yadgir population have copper-mediated intrinsic immunity to resist COVID-19 challenge? Med Hypotheses. 2021;146:110362. doi: 10.1016/j.mehy.2020.110362
  72. Shakoor H, Feehan J, Al Dhaheri AS, et al. Immune-boosting role of vitamins D, C, E, zinc, selenium and omega-3 fatty acids: Could they help against COVID-19? Maturitas. 2021;143:1–9. doi: 10.1016/j.maturitas.2020.08.003
  73. Fernández-Quintela A, Milton-Laskibar I, Trepiana J, et al. Key aspects in nutritional management of COVID-19 patients. J Clin Med. 2020;9(8):2589. doi: 10.3390/jcm9082589
  74. Bae M, Kim H. The role of vitamin C, vitamin D, and selenium in immune system against COVID-19. Molecules. 2020;25(22):5346. doi: 10.3390/molecules25225346
  75. Belikina DV, Malysheva ES, Petrov AV, et al. COVID-19 in patients with diabetes: clinical course, metabolic status, inflammation, and coagulation disorder. Sovremennye Tehnologii v Medicine. 2020;12(5):6–18. (In Russ). doi: 10.17691/stm2020.12.5.01
  76. Babenko AYu, Laevskaya MYu. Diabetes mellitus and COVID-19. How are they related? Modern strategies of struggle. Arterial Hypertension. 2020;26(3):304–311. (in Russ). doi: 10.18705/1607-419X-2020-26-3-304-311
  77. Mit’kovskaya N, Grigorenko E, Ruzanov D, Statkevich T. Coronavirus infection COVID-19 and comorbidity. Science and Innovation. 2020;(7):50–60. (In Russ). doi: 10.29235/1818-9857-2020-7-50-60
  78. James PT, Ali Z, Armitage AE, et al. The role of nutrition in COVID-19 susceptibility and severity of disease: A systematic review. J Nutr. 2021:151(7):1854–1878. doi: 10.1093/jn/nxab059
  79. Banach W, Nitschke K, Krajewska N, et al. The association between excess body mass and disturbances in somatic mineral levels. Int J Mol Sci. 2020;21(19):7306. doi: 10.3390/ijms21197306
  80. Dubey P, Thakur V, Chattopadhyay M. Role of minerals and trace elements in diabetes and insulin resistance. Nutrients. 2020;12(6):1864. doi: 10.3390/nu12061864
  81. Pinnawala NU, Thrastardottir TO, Constantinou C. Keeping a balance during the pandemic: A narrative review on the important role of micronutrients in preventing infection and reducing complications of COVID-19. Curr Nutr Rep. 2021;10(3):200–210. doi: 10.1007/s13668-021-00356-2

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 86508 от 11.12.2023
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ЭЛ № ФС 77 - 80650 от 15.03.2021
г.



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies