A Computational Approach for Designing and Validating Small Interfering RNA against SARS-CoV-2 Variants
- Авторы: Dhotre K.1, Dass D.1, Banerjee A.1, Nema V.2, Mukherjee A.1
-
Учреждения:
- Division of Virology, ICMR-National AIDS Research Institute
- Division of Molecular Biology, ICMR-National AIDS Research Institute
- Выпуск: Том 20, № 6 (2024)
- Страницы: 876-887
- Раздел: Chemistry
- URL: https://rjpbr.com/1573-4099/article/view/644387
- DOI: https://doi.org/10.2174/1573409920666230825111406
- ID: 644387
Цитировать
Полный текст
Аннотация
Aims:The aim of this study is to develop a novel antiviral strategy capable of efficiently targeting a broad set of SARS-CoV-2 variants.
Background:Since the first emergence of SARS-CoV-2, it has rapidly transformed into a global pandemic, posing an unprecedented threat to public health. SARS-CoV-2 is prone to mutation and continues to evolve, leading to the emergence of new variants capable of escaping immune protection achieved due to previous SARS-CoV-2 infections or by vaccination.
Objective:RNA interference (RNAi) is a remarkable biological mechanism that can induce gene silencing by targeting complementary mRNA and inhibiting its translation.
Method:In this study, using the computational approach, we predicted the most efficient siRNA capable of inhibiting SARS-CoV-2 variants of concern (VoCs).
Result:The presented siRNA was characterized and evaluated for its thermodynamic properties, offsite-target hits, and in silico validation by molecular docking and molecular dynamics simulations (MD) with Human AGO2 protein
Conclusion:The study contributes to the possibility of designing and developing an effective response strategy against existing variants of concerns and preventing further.
Ключевые слова
Об авторах
Kishore Dhotre
Division of Virology, ICMR-National AIDS Research Institute
Email: info@benthamscience.net
Debashree Dass
Division of Virology, ICMR-National AIDS Research Institute
Email: info@benthamscience.net
Anwesha Banerjee
Division of Virology, ICMR-National AIDS Research Institute
Email: info@benthamscience.net
Vijay Nema
Division of Molecular Biology, ICMR-National AIDS Research Institute
Email: info@benthamscience.net
Anupam Mukherjee
Division of Virology, ICMR-National AIDS Research Institute
Автор, ответственный за переписку.
Email: info@benthamscience.net
Список литературы
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; Niu, P.; Zhan, F.; Ma, X.; Wang, D.; Xu, W.; Wu, G.; Gao, G.F.; Tan, W. A novel coronavirus from patients with pneumonia in china, 2019. N. Engl. J. Med., 2020, 382(8), 727-733. doi: 10.1056/NEJMoa2001017 PMID: 31978945
- Adil, M.T.; Rahman, R.; Whitelaw, D.; Jain, V.; Al-Taan, O.; Rashid, F.; Munasinghe, A.; Jambulingam, P. SARS-CoV-2 and the pandemic of COVID-19. Postgrad. Med. J., 2021, 97(1144), 110-116. doi: 10.1136/postgradmedj-2020-138386 PMID: 32788312
- WHO. WHO Coronavirus (COVID-19) Dashboard. 2023. Available From: https://covid19.who.int/
- Sharma, A.; Ahmad Farouk, I.; Lal, S.K. COVID-19: A review on the novel coronavirus disease evolution, transmission, detection, control and prevention. Viruses, 2021, 13(2), 202. doi: 10.3390/v13020202 PMID: 33572857
- Guan, W.; Ni, Z.; Hu, Y.; Liang, W.; Ou, C.; He, J.; Liu, L.; Shan, H.; Lei, C.; Hui, D.S.C.; Du, B.; Li, L.; Zeng, G.; Yuen, K.Y.; Chen, R.; Tang, C.; Wang, T.; Chen, P.; Xiang, J.; Li, S.; Wang, J.; Liang, Z.; Peng, Y.; Wei, L.; Liu, Y.; Hu, Y.; Peng, P.; Wang, J.; Liu, J.; Chen, Z.; Li, G.; Zheng, Z.; Qiu, S.; Luo, J.; Ye, C.; Zhu, S.; Zhong, N. Clinical characteristics of coronavirus disease 2019 in china. N. Engl. J. Med., 2020, 382(18), 1708-1720. doi: 10.1056/NEJMoa2002032 PMID: 32109013
- Wu, Z.; McGoogan, J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in china. JAMA, 2020, 323(13), 1239-1242. doi: 10.1001/jama.2020.2648 PMID: 32091533
- Brian, D.A.; Baric, R.S. Coronavirus genome structure and replication. Coronavirus Replication and Reverse Genetics; Enjuanes, L., Ed.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2005, Vol. 287, pp. 1-30. doi: 10.1007/3-540-26765-4_1
- Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; Chen, H.D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R.D.; Liu, M.Q.; Chen, Y.; Shen, X.R.; Wang, X.; Zheng, X.S.; Zhao, K.; Chen, Q.J.; Deng, F.; Liu, L.L.; Yan, B.; Zhan, F.X.; Wang, Y.Y.; Xiao, G.F.; Shi, Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798), 270-273. doi: 10.1038/s41586-020-2012-7 PMID: 32015507
- Tang, X.; Wu, C.; Li, X.; Song, Y.; Yao, X.; Wu, X.; Duan, Y.; Zhang, H.; Wang, Y.; Qian, Z.; Cui, J.; Lu, J. On the origin and continuing evolution of SARS-CoV-2. Natl. Sci. Rev., 2020, 7(6), 1012-1023. doi: 10.1093/nsr/nwaa036 PMID: 34676127
- Telenti, A.; Arvin, A.; Corey, L.; Corti, D.; Diamond, M.S.; García-Sastre, A.; Garry, R.F.; Holmes, E.C.; Pang, P.S.; Virgin, H.W. After the pandemic: Perspectives on the future trajectory of COVID-19. Nature, 2021, 596(7873), 495-504. doi: 10.1038/s41586-021-03792-w PMID: 34237771
- Cele, S.; Gazy, I.; Jackson, L.; Hwa, S.H.; Tegally, H.; Lustig, G.; Giandhari, J.; Pillay, S.; Wilkinson, E.; Naidoo, Y.; Karim, F.; Ganga, Y.; Khan, K.; Bernstein, M.; Balazs, A.B.; Gosnell, B.I.; Hanekom, W.; Moosa, M.Y.S.; Lessells, R.J.; de Oliveira, T.; Sigal, A. Escape of SARS-CoV-2 501Y.V2 from neutralization by convalescent plasma. Nature, 2021, 593(7857), 142-146. doi: 10.1038/s41586-021-03471-w PMID: 33780970
- Chan, K.W.; Wong, V.T.; Tang, S.C.W. COVID-19: An update on the epidemiological, clinical, preventive and therapeutic evidence and guidelines of integrative chinese-western medicine for the management of 2019 novel coronavirus disease. Am. J. Chin. Med., 2020, 48(3), 737-762. doi: 10.1142/S0192415X20500378 PMID: 32164424
- Mlcochova, P.; Kemp, S.A.; Dhar, M.S.; Papa, G.; Meng, B.; Ferreira, I.A.T.M.; Datir, R.; Collier, D.A.; Albecka, A.; Singh, S.; Pandey, R.; Brown, J.; Zhou, J.; Goonawardane, N.; Mishra, S.; Whittaker, C.; Mellan, T.; Marwal, R.; Datta, M.; Sengupta, S.; Ponnusamy, K.; Radhakrishnan, V.S.; Abdullahi, A.; Charles, O.; Chattopadhyay, P.; Devi, P.; Caputo, D.; Peacock, T.; Wattal, C.; Goel, N.; Satwik, A.; Vaishya, R.; Agarwal, M.; Chauhan, H.; Dikid, T.; Gogia, H.; Lall, H.; Verma, K.; Dhar, M.S.; Singh, M.K.; Soni, N.; Meena, N.; Madan, P.; Singh, P.; Sharma, R.; Sharma, R.; Kabra, S.; Kumar, S.; Kumari, S.; Sharma, U.; Chaudhary, U.; Sivasubbu, S.; Scaria, V.; Oberoi, J.K.; Raveendran, R.; Datta, S.; Das, S.; Maitra, A.; Chinnaswamy, S.; Biswas, N.K.; Parida, A.; Raghav, S.K.; Prasad, P.; Sarin, A.; Mayor, S.; Ramakrishnan, U.; Palakodeti, D.; Seshasayee, A.S.N.; Thangaraj, K.; Bashyam, M.D.; Dalal, A.; Bhat, M.; Shouche, Y.; Pillai, A.; Abraham, P.; Potdar, V.A.; Cherian, S.S.; Desai, A.S.; Pattabiraman, C.; Manjunatha, M.V.; Mani, R.S.; Udupi, G.A.; Nandicoori, V.; Tallapaka, K.B.; Sowpati, D.T.; Kawabata, R.; Morizako, N.; Sadamasu, K.; Asakura, H.; Nagashima, M.; Yoshimura, K.; Ito, J.; Kimura, I.; Uriu, K.; Kosugi, Y.; Suganami, M.; Oide, A.; Yokoyama, M.; Chiba, M.; Saito, A.; Butlertanaka, E.P.; Tanaka, Y.L.; Ikeda, T.; Motozono, C.; Nasser, H.; Shimizu, R.; Yuan, Y.; Kitazato, K.; Hasebe, H.; Nakagawa, S.; Wu, J.; Takahashi, M.; Fukuhara, T.; Shimizu, K.; Tsushima, K.; Kubo, H.; Shirakawa, K.; Kazuma, Y.; Nomura, R.; Horisawa, Y.; Takaori-Kondo, A.; Tokunaga, K.; Ozono, S.; Baker, S.; Dougan, G.; Hess, C.; Kingston, N.; Lehner, P.J.; Lyons, P.A.; Matheson, N.J.; Owehand, W.H.; Saunders, C.; Summers, C.; Thaventhiran, J.E.D.; Toshner, M.; Weekes, M.P.; Maxwell, P.; Shaw, A.; Bucke, A.; Calder, J.; Canna, L.; Domingo, J.; Elmer, A.; Fuller, S.; Harris, J.; Hewitt, S.; Kennet, J.; Jose, S.; Kourampa, J.; Meadows, A.; OBrien, C.; Price, J.; Publico, C.; Rastall, R.; Ribeiro, C.; Rowlands, J.; Ruffolo, V.; Tordesillas, H.; Bullman, B.; Dunmore, B.J.; Fawke, S.; Gräf, S.; Hodgson, J.; Huang, C.; Hunter, K.; Jones, E.; Legchenko, E.; Matara, C.; Martin, J.; Mescia, F.; ODonnell, C.; Pointon, L.; Pond, N.; Shih, J.; Sutcliffe, R.; Tilly, T.; Treacy, C.; Tong, Z.; Wood, J.; Wylot, M.; Bergamaschi, L.; Betancourt, A.; Bower, G.; Cossetti, C.; De Sa, A.; Epping, M.; Fawke, S.; Gleadall, N.; Grenfell, R.; Hinch, A.; Huhn, O.; Jackson, S.; Jarvis, I.; Krishna, B.; Lewis, D.; Marsden, J.; Nice, F.; Okecha, G.; Omarjee, O.; Perera, M.; Potts, M.; Richoz, N.; Romashova, V.; Yarkoni, N.S.; Sharma, R.; Stefanucci, L.; Stephens, J.; Strezlecki, M.; Turner, L.; De Bie, E.M.D.D.; Bunclark, K.; Josipovic, M.; Mackay, M.; Rossi, S.; Selvan, M.; Spencer, S.; Yong, C.; Allison, J.; Butcher, H.; Caputo, D.; Clapham-Riley, D.; Dewhurst, E.; Furlong, A.; Graves, B.; Gray, J.; Ivers, T.; Kasanicki, M.; Le Gresley, E.; Linger, R.; Meloy, S.; Muldoon, F.; Ovington, N.; Papadia, S.; Phelan, I.; Stark, H.; Stirrups, K.E.; Townsend, P.; Walker, N.; Webster, J.; Scholtes, I.; Hein, S.; King, R.; Mavousian, A.; Lee, J.H.; Bassi, J.; Silacci-Fegni, C.; Saliba, C.; Pinto, D.; Irie, T.; Yoshida, I.; Hamilton, W.L.; Sato, K.; Bhatt, S.; Flaxman, S.; James, L.C.; Corti, D.; Piccoli, L.; Barclay, W.S.; Rakshit, P.; Agrawal, A.; Gupta, R.K. SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion. Nature, 2021, 599(7883), 114-119. doi: 10.1038/s41586-021-03944-y PMID: 34488225
- Naveca, F.G.; Nascimento, V.; de Souza, V.C.; Corado, A.L.; Nascimento, F.; Silva, G.; Costa, Á.; Duarte, D.; Pessoa, K.; Mejía, M.; Brandão, M.J.; Jesus, M.; Gonçalves, L.; da Costa, C.F.; Sampaio, V.; Barros, D.; Silva, M.; Mattos, T.; Pontes, G.; Abdalla, L.; Santos, J.H.; Arantes, I.; Dezordi, F.Z.; Siqueira, M.M.; Wallau, G.L.; Resende, P.C.; Delatorre, E.; Gräf, T.; Bello, G. COVID-19 in Amazonas, Brazil, was driven by the persistence of endemic lineages and P.1 emergence. Nat. Med., 2021, 27(7), 1230-1238. doi: 10.1038/s41591-021-01378-7 PMID: 34035535
- Brandal, L.T.; MacDonald, E.; Veneti, L.; Ravlo, T.; Lange, H.; Naseer, U.; Feruglio, S.; Bragstad, K.; Hungnes, O.; Ødeskaug, L.E.; Hagen, F.; Hanch-Hansen, K.E.; Lind, A.; Watle, S.V.; Taxt, A.M.; Johansen, M.; Vold, L.; Aavitsland, P.; Nygård, K.; Madslien, E.H. Outbreak caused by the SARS-CoV-2 Omicron variant in Norway, November to December 2021. Euro Surveill., 2021, 26(50), 2101147. doi: 10.2807/1560-7917.ES.2021.26.50.2101147 PMID: 34915975
- Levanova, A.; Poranen, M.M. RNA interference as a prospective tool for the control of human viral infections. Front. Microbiol., 2018, 9, 2151. doi: 10.3389/fmicb.2018.02151 PMID: 30254624
- Müller, M.; Fazi, F.; Ciaudo, C. Argonaute proteins: From structure to function in development and pathological cell fate determination. Front. Cell Dev. Biol., 2020, 7, 360. doi: 10.3389/fcell.2019.00360 PMID: 32039195
- Elkayam, E.; Kuhn, C.D.; Tocilj, A.; Haase, A.D.; Greene, E.M.; Hannon, G.J.; Joshua-Tor, L. The structure of human argonaute-2 in complex with miR-20a. Cell, 2012, 150(1), 100-110. doi: 10.1016/j.cell.2012.05.017 PMID: 22682761
- Pickett, B.E.; Sadat, E.L.; Zhang, Y.; Noronha, J.M.; Squires, R.B.; Hunt, V.; Liu, M.; Kumar, S.; Zaremba, S.; Gu, Z.; Zhou, L.; Larson, C.N.; Dietrich, J.; Klem, E.B.; Scheuermann, R.H. ViPR: An open bioinformatics database and analysis resource for virology research. Nucleic Acids Res., 2012, 40(D1), D593-D598. doi: 10.1093/nar/gkr859 PMID: 22006842
- Katoh, K.; Rozewicki, J.; Yamada, K.D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform., 2019, 20(4), 1160-1166. doi: 10.1093/bib/bbx108 PMID: 28968734
- Amarzguioui, M.; Prydz, H. An algorithm for selection of functional siRNA sequences. Biochem. Biophys. Res. Commun., 2004, 316(4), 1050-1058. doi: 10.1016/j.bbrc.2004.02.157 PMID: 15044091
- Reynolds, A.; Leake, D.; Boese, Q.; Scaringe, S.; Marshall, W.S.; Khvorova, A. Rational siRNA design for RNA interference. Nat. Biotechnol., 2004, 22(3), 326-330. doi: 10.1038/nbt936 PMID: 14758366
- Ui-Tei, K.; Naito, Y.; Takahashi, F.; Haraguchi, T.; Ohki-Hamazaki, H.; Juni, A.; Ueda, R.; Saigo, K. Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res., 2004, 32(3), 936-948. doi: 10.1093/nar/gkh247 PMID: 14769950
- Kibbe, W.A. OligoCalc: An online oligonucleotide properties calculator. Nucleic Acids Res., 2007, 35(Web Server), W43-W46. doi: 10.1093/nar/gkm234 PMID: 17452344
- Bellaousov, S.; Reuter, J.S.; Seetin, M.G.; Mathews, D.H. RNAstructure: Web servers for RNA secondary structure prediction and analysis. Nucleic Acids Res., 2013, 41(W1), W471-W474. doi: 10.1093/nar/gkt290 PMID: 23620284
- Markham, N.R.; Zuker, M. DINAMelt web server for nucleic acid melting prediction. Nucleic Acids Res., 2005, 33(Web Server), W577-W581. doi: 10.1093/nar/gki591 PMID: 15980540
- Meister, G.; Landthaler, M.; Patkaniowska, A.; Dorsett, Y.; Teng, G.; Tuschl, T. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell, 2004, 15(2), 185-197. doi: 10.1016/j.molcel.2004.07.007 PMID: 15260970
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; Lepore, R.; Schwede, T. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res., 2018, 46(W1), W296-W303. doi: 10.1093/nar/gky427 PMID: 29788355
- Schirle, N.T.; Sheu-Gruttadauria, J.; Chandradoss, S.D.; Joo, C.; MacRae, I.J. Water-mediated recognition of t1-adenosine anchors Argonaute2 to microRNA targets. eLife, 2015, 4, e07646. doi: 10.7554/eLife.07646 PMID: 26359634
- Heo, L.; Park, H.; Seok, C. GalaxyRefine: Protein structure refinement driven by side-chain repacking. Nucleic Acids Res., 2013, 41(W1), W384-W388. doi: 10.1093/nar/gkt458 PMID: 23737448
- Wiederstein, M.; Sippl, M.J. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res., 2007, 35(Web Server), W407-W410. doi: 10.1093/nar/gkm290 PMID: 17517781
- Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res., 2003, 31(13), 3406-3415. doi: 10.1093/nar/gkg595 PMID: 12824337
- Popenda, M.; Szachniuk, M.; Antczak, M.; Purzycka, K.J.; Lukasiak, P.; Bartol, N.; Blazewicz, J.; Adamiak, R.W. Automated 3D structure composition for large RNAs. Nucleic Acids Res., 2012, 40(14), e112-e112. doi: 10.1093/nar/gks339 PMID: 22539264
- Yan, Y.; Zhang, D.; Zhou, P.; Li, B.; Huang, S.Y. HDOCK: A web server for proteinprotein and proteinDNA/RNA docking based on a hybrid strategy. Nucleic Acids Res., 2017, 45(W1), W365-W373. doi: 10.1093/nar/gkx407 PMID: 28521030
- Adasme, M.F.; Linnemann, K.L.; Bolz, S.N.; Kaiser, F.; Salentin, S.; Haupt, V.J.; Schroeder, M. PLIP 2021: Expanding the scope of the proteinligand interaction profiler to DNA and RNA. Nucleic Acids Res., 2021, 49(W1), W530-W534. doi: 10.1093/nar/gkab294 PMID: 33950214
- Auweter, S.D.; Fasan, R.; Reymond, L.; Underwood, J.G.; Black, D.L.; Pitsch, S.; Allain, F.H.T. Molecular basis of RNA recognition by the human alternative splicing factor Fox-1. EMBO J., 2006, 25(1), 163-173. doi: 10.1038/sj.emboj.7600918 PMID: 16362037
- Kalra, K.; Gorle, S.; Cavallo, L.; Oliva, R.; Chawla, M. Occurrence and stability of lone pair-π and OHπ interactions between water and nucleobases in functional RNAs. Nucleic Acids Res., 2020, 48(11), 5825-5838. doi: 10.1093/nar/gkaa345 PMID: 32392301
- Corley, M.; Burns, M.C.; Yeo, G.W. How RNA-binding proteins interact with RNA: molecules and mechanisms. Mol. Cell, 2020, 78(1), 9-29. doi: 10.1016/j.molcel.2020.03.011 PMID: 32243832
- Kumar, S.; Nussinov, R. Close-range electrostatic interactions in proteins. ChemBioChem, 2002, 3(7), 604-617. doi: 10.1002/1439-7633(20020703)3:73.0.CO;2-X PMID: 12324994
- Tolstorukov, M.Y.; Jernigan, R.L.; Zhurkin, V.B. Protein-DNA hydrophobic recognition in the minor groove is facilitated by sugar switching. J. Mol. Biol., 2004, 337(1), 65-76. doi: 10.1016/j.jmb.2004.01.011 PMID: 15001352
- Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J.C. GROMACS: Fast, flexible, and free. J. Comput. Chem., 2005, 26(16), 1701-1718. doi: 10.1002/jcc.20291 PMID: 16211538
- Duan, Y.; Wu, C.; Chowdhury, S.; Lee, M.C.; Xiong, G.; Zhang, W.; Yang, R.; Cieplak, P.; Luo, R.; Lee, T.; Caldwell, J.; Wang, J.; Kollman, P. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J. Comput. Chem., 2003, 24(16), 1999-2012. doi: 10.1002/jcc.10349 PMID: 14531054
- Shawan, M.M.A.K.; Sharma, A.R.; Bhattacharya, M.; Mallik, B.; Akhter, F.; Shakil, M.S.; Hossain, M.M.; Banik, S.; Lee, S.S.; Hasan, M.A.; Chakraborty, C. Designing an effective therapeutic siRNA to silence RdRp gene of SARS-CoV-2. Infect. Genet. Evol., 2021, 93, 104951. doi: 10.1016/j.meegid.2021.104951 PMID: 34089909
- Amiri, A.; Barreto, G.; Sathyapalan, T.; Sahebkar, A. siRNA Therapeutics: Future Promise for Neurodegenerative Diseases. Curr. Neuropharmacol., 2021, 19(11), 1896-1911. doi: 10.2174/1570159X19666210402104054
- Beniac, D.R.; Andonov, A.; Grudeski, E.; Booth, T.F. Architecture of the SARS coronavirus prefusion spike. Nat. Struct. Mol. Biol., 2006, 13(8), 751-752. doi: 10.1038/nsmb1123 PMID: 16845391
- Delmas, B.; Laude, H. Assembly of coronavirus spike protein into trimers and its role in epitope expression. J. Virol., 1990, 64(11), 5367-5375. doi: 10.1128/jvi.64.11.5367-5375.1990 PMID: 2170676
- Bhattacharya, M.; Chatterjee, S.; Sharma, A.R.; Agoramoorthy, G.; Chakraborty, C. D614G mutation and SARS-CoV-2: Impact on S-protein structure, function, infectivity, and immunity. Appl. Microbiol. Biotechnol., 2021, 105(24), 9035-9045. doi: 10.1007/s00253-021-11676-2 PMID: 34755213
- Naito, Y.; Yoshimura, J.; Morishita, S.; Ui-Tei, K. siDirect 2.0: Updated software for designing functional siRNA with reduced seed-dependent off-target effect. BMC Bioinformatics, 2009, 10(1), 392. doi: 10.1186/1471-2105-10-392 PMID: 19948054
- Brechin, V.; Shinohara, F.; Saito, J.; Seitz, H.; Tomari, Y. Mechanistic analysis of the enhanced RNAi activity by 6-mCEPh-purine at the 5′ end of the siRNA guide strand. RNA, 2021, 27(2), 151-162. doi: 10.1261/rna.073775.119 PMID: 33177187
- Boland, A.; Tritschler, F.; Heimstädt, S.; Izaurralde, E.; Weichenrieder, O. Crystal structure and ligand binding of the MID domain of a eukaryotic Argonaute protein. EMBO Rep., 2010, 11(7), 522-527. doi: 10.1038/embor.2010.81 PMID: 20539312
- Kandeel, M.; Kitade, Y. Computational analysis of siRNA recognition by the Ago2 PAZ domain and identification of the determinants of RNA-induced gene silencing. PLoS One, 2013, 8(2), e57140. doi: 10.1371/journal.pone.0057140 PMID: 23441235
- Chowdhury, U.F.; Sharif Shohan, M.U.; Hoque, K.I.; Beg, M.A.; Sharif Siam, M.K.; Moni, M.A. A computational approach to design potential siRNA molecules as a prospective tool for silencing nucleocapsid phosphoprotein and surface glycoprotein gene of SARS-CoV-2. Genomics, 2021, 113(1), 331-343. doi: 10.1016/j.ygeno.2020.12.021 PMID: 33321203
- Shi, H.; Ullu, E.; Tschudi, C. Function of the Trypanosome Argonaute 1 protein in RNA interference requires the N-terminal RGG domain and arginine 735 in the Piwi domain. J. Biol. Chem., 2004, 279(48), 49889-49893. doi: 10.1074/jbc.M409280200 PMID: 15383544
- Dana, H.; Chalbatani, G.M.; Mahmoodzadeh, H.; Karimloo, R.; Rezaiean, O.; Moradzadeh, A molecular mechanisms and biological functions of siRNA. Int. J. Biomed. Sci., 2017, 13, 48-57. doi: 10.59566/IJBS.2017.13048
- Yonezawa, S.; Koide, H.; Asai, T. Recent advances in siRNA delivery mediated by lipid-based nanoparticles. Adv. Drug Deliv. Rev., 2020, 154-155, 64-78. doi: 10.1016/j.addr.2020.07.022 PMID: 32768564
- de Paula Brandão, P.R.; Titze-de-Almeida, S.S.; Titze-de-Almeida, R. Leading RNA interference therapeutics part 2: Silencing Delta-Aminolevulinic Acid Synthase 1, with a Focus on Givosiran. Mol. Diagn. Ther., 2020, 24(1), 61-68. doi: 10.1007/s40291-019-00438-6 PMID: 31792921
- Hoy, S.M. Patisiran: First global approval. Drugs, 2018, 78(15), 1625-1631. doi: 10.1007/s40265-018-0983-6 PMID: 30251172
Дополнительные файлы
