Investigation on the Anticancer Activity of [6]-Gingerol of Zingiber officinale and its Structural Analogs against Skin Cancer


Дәйексөз келтіру

Толық мәтін

Аннотация

Introduction:Skin cancer is the most common type of cancer caused by the uncontrolled growth of abnormal cells in the epidermis and the outermost skin layer.

Aim:This study aimed to study the anti-skin cancer potential of [6]-Gingerol and 21 related structural analogs using in vitro and in silico studies.

Method:The ethanolic crude extract of the selected plant was subjected to phytochemical and GC-MS analysis to confirm the presence of the [6]-gingerol. The anticancer activity of the extract was evaluated by MTT (3-[4, 5-dimethylthiazol-2-y]-2, 5-diphenyl tetrazolium bromide) assay using the A431 human skin adenocarcinoma cell line.

Result:The GC-MS analysis confirmed the presence of [6]-Gingerol compound, and its promising cytotoxicity IC50 was found at 81.46 ug/ml in the MTT assay. Furthermore, the in silico studies used [6]-Gingerol and 21 structural analogs collected from the PubChem database to investigate the anticancer potential and drug-likeliness properties. Skin cancer protein, DDX3X, was selected as a target that regulates all stages of RNA metabolism. It was docked with 22 compounds, including [6]-Gingerol and 21 structural analogs. The potent lead molecule was selected based on the lowest binding energy value.

Conclusion:Thus, the [6]-Gingerol and its structure analogs could be used as lead molecules against skin cancer and future drug development process.

Авторлар туралы

Monisha Adikesavan

Department of Biotechnology, Prathyusha Engineering College

Email: info@benthamscience.net

Praveena Athiraja

Department of Biotechnology, Prathyusha Engineering College

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Monisha Divakar

Department of Biotechnology, Prathyusha Engineering College

Email: info@benthamscience.net

Әдебиет тізімі

  1. Baba, A.I.; Câtoi, C. Tumor Cell Morphology Bucharest (RO) Comparative Oncology; The Publishing House of the Romanian Academy: Romania, 2007.
  2. Hassanpour, S.H.; Dehghani, M. Review of cancer from perspective of molecular. J. Cancer Res. Pract., 2017, 4(4), 127-129. doi: 10.1016/j.jcrpr.2017.07.001
  3. Howell, J.Y.; Ramsey, M.L. Squamous Cell Skin Cancer; StatPearls, 2022.
  4. Hueng, D.Y.; Tsai, W.C.; Chiou, H.Y.; Feng, S.W.; Lin, C.; Li, Y.F.; Huang, L.C.; Lin, M.H. DDX3X biomarker correlates with poor survival in human Gliomas. Int. J. Mol. Sci., 2015, 16(12), 15578-15591. doi: 10.3390/ijms160715578 PMID: 26184164
  5. Mo, J.; Liang, H.; Su, C.; Li, P.; Chen, J.; Zhang, B. DDX3X: Structure, physiologic functions and cancer. Mol. Cancer, 2021, 20(1), 38. doi: 10.1186/s12943-021-01325-7 PMID: 33627125
  6. Surh, Y.J.; Lee, E.; Lee, J.M. Chemoprotective properties of some pungent ingredients present in red pepper and ginger. Mutat. Res., 1998, 402(1-2), 259-267. doi: 10.1016/S0027-5107(97)00305-9 PMID: 9675305
  7. Eliopoulos, C. Ginger: More than a great spice. Director, 2007, 15(1), 46-47. PMID: 19348054
  8. Nicoll, R.; Henein, M.Y. Ginger (Zingiber officinale Roscoe): A hot remedy for cardiovascular disease? Int. J. Cardiol., 2009, 131(3), 408-409. doi: 10.1016/j.ijcard.2007.07.107 PMID: 18037515
  9. Rahman, G.; Syed Umer, J.; Syed, F.; Samiullah, S.; Nusrat, J. Preliminary phytochemical screening, quantitative analysis of alkaloids, and antioxidant activity of crude plant extracts from Ephedra intermedia indigenous to balochistan. Sci. World J.,, 2017, 2017, 5873648. doi: 10.1155/2017/5873648
  10. Bryan, CPG.; Elliot, S. C Ancient Egyptian medicine: the Papyrus Ebers; Ares Publishers, 2021.
  11. Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242. doi: 10.1093/nar/28.1.235 PMID: 10592235
  12. Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; Zaslavsky, L.; Zhang, J.; Bolton, E.E. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res., 2021, 49(D1), D1388-D1395. doi: 10.1093/nar/gkaa971 PMID: 33151290
  13. Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. Autodock vina 1.2.0: New docking methods, expanded force field, and python bindings. J. Chem. Inf. Model., 2021, 61(8), 3891-3898. doi: 10.1021/acs.jcim.1c00203 PMID: 34278794
  14. Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717. doi: 10.1038/srep42717 PMID: 28256516
  15. Lee, C.S.; Dias, A.P.; Jedrychowski, M.; Patel, A.H.; Hsu, J.L.; Reed, R. Human DDX3 functions in translation and interacts with the translation initiation factor eIF3. Nucleic Acids Res., 2008, 36(14), 4708-4718. doi: 10.1093/nar/gkn454 PMID: 18628297
  16. Park, Y.J.; Wen, J.; Bang, S.; Park, S.W.; Song, S.Y. 6-Gingerolinduces cell cycle arrest and cell death of mutant p53-expressing pancreatic cancer cells. Yonsei Med. J., 2006, 47(5), 688-697. doi: 10.3349/ymj.2006.47.5.688
  17. Ortega, S.S.; Cara, L.C.L.; Salvador, M.K. In silico pharmacology for a multidisciplinary drug discovery process. Drug Metabol. Drug Interact., 2012, 27(4), 199-207. doi: 10.1515/dmdi-2012-0021 PMID: 23152402

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2024