Ионно-кластерная обработка поверхности монокристаллических кремния и германия под углом 60°
- Авторы: Николаев И.В.1, Коробейщиков Н.Г.1, Лапега А.В.1
- 
							Учреждения: 
							- Новосибирский государственный университет
 
- Выпуск: № 2 (2025)
- Страницы: 60-64
- Раздел: Статьи
- URL: https://rjpbr.com/1028-0960/article/view/686789
- DOI: https://doi.org/10.31857/S1028096025020089
- EDN: https://elibrary.ru/EHKNOR
- ID: 686789
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Рассмотрено формирование самоупорядоченных наноструктур на поверхности монокристаллических кремния и германия с помощью ионно-кластерной обработки. Использованы низкоэнергетические кластерные ионы аргона для более эффективного наноструктурирования поверхности мишеней. С помощью атомно-силового микроскопа проанализирована морфология поверхности мишеней до и после обработки ионно-кластерным пучком аргона. Показано, что обработка низкоэнергетическими кластерными ионами аргона при угле падения 60° относительно нормали к поверхности приводит к эффективному наноструктурированию поверхности кремния и германия при глубине травления, соизмеримой с амплитудой наноструктур. Приведены параметры шероховатости (среднеквадратичная шероховатость и максимальный перепад высот) исходной и обработанных поверхностей мишеней. Проведено сравнение периодов и амплитуд наноструктур, сформированных на поверхностях кремния и германия. Определено, что для дозы облучения 1 × 1015 см–2 период наноструктур на поверхностях монокристаллического кремния и германия составляет около 200 нм, в случае германия период больше. Амплитуда наноструктур на поверхности кремния и германия составила около 65 и 50 нм соответственно. После обработки кластерными ионами аргона формируется более развитая поверхность монокристаллического кремния по сравнению с германием.
Полный текст
 
												
	                        Об авторах
И. В. Николаев
Новосибирский государственный университет
							Автор, ответственный за переписку.
							Email: i.nikolaev@nsu.ru
				                					                																			                												                	Россия, 							Новосибирск						
Н. Г. Коробейщиков
Новосибирский государственный университет
														Email: korobei@nsu.ru
				                					                																			                												                	Россия, 							Новосибирск						
А. В. Лапега
Новосибирский государственный университет
														Email: i.nikolaev@nsu.ru
				                					                																			                												                	Россия, 							Новосибирск						
Список литературы
- Bao S.Y., Wang Y., Lina K., Zhang L., Wang B., Sasangka W.A., Lee K.E.K., Chua S.J., Michel J., Fitzgerald E., Tan C.S., Lee K.H. // J. Semicond. 2021. V. 42. № 2. Р. 023106. https://doi.org/10.1088/1674-4926/42/2/023106
- Haller E.E. // Mater. Sci. Semicond. Process. 2006. V. 8. Iss. 4–5. P. 408. https://doi.org/10.1016/j.mssp.2006.08.063
- Toriumi A., Nishimura T. // Jpn. J. Appl. Phys. 2018. V. 57. № 1. P. 010101. https://doi.org/10.7567/JJAP.57.010101
- Chason E., Mayer T.M., Kellerman B.K., McIlroy D.T., Howard A.J. // Phys. Rev. Lett. 1994. V. 72. P. 3040. https://doi.org/10.1103/PhysRevLett.72.3040
- Ziberi B., Cornejo M., Frost F., Rauschenbach B. // J. Phys.: Condens. Matter. 2009. V. 21. Р. 224003. https://doi.org/10.1088/0953-8984/21/22/224003
- Teichmann M., Lorbeer J., Ziberi B., Frost F., Rauschenbach B. // New J. Phys. 2013. V. 15. Р. 103029. https://doi.org/10.1088/1367-2630/15/10/103029
- Perkinson J.C., Madi C.S., Aziz M.J. // J. Vac. Sci. Technol. A. 2013. V. 31. Р. 021405. http://doi.org/10.1116/1.4792152
- Lopez-Cazalilla A., Chowdhury D., Ilinov A., Mondal S., Barman P., Bhattacharyya S.R., Ghose D., Djurabekova F., Nordlund K., Norris S. // J. Appl. Phys. 2018. V. 123. Р. 235108. https://doi.org/10.1063/1.5026447
- Toyoda N., Yamada I. // AIP Conf. Proc. 2006. V. 866. P. 210. https://doi.org/10.1063/1.2401497
- Popok V.N., Barke I., Campbell E.E.B., Meiwes-Broer K.-H. // Surf. Sci. Rep. 2011. V. 66. P. 347. https://doi.org/10.1016/j.surfrep.2011.05.002
- Yamada I. // Materials Processing by Cluster ion Beams: History, Technology, and Applications. Boca Raton, Florida: CRC Press, 2016.
- Иешкин A.E., Толстогузов А.Б., Коробейщиков Н.Г., Пеленович В.О., Черныш В.С. // Успехи физических наук. 2021. Т. 192. C. 722. https://doi.org/10.3367/UFNr.2021.06.038994 (Ieshkin A.E., Tolstoguzov A.B., Korobeishchikov N.G., Pelenovich V.O., Chernysh V.S. // Phys. Usp. 2022. V. 65. P. 677. https://doi.org/10.3367/UFNe.2021.06.038994).
- Korobeishchikov N.G., Nikolaev I.V., Roenko M.A., Atuchin V.V. // Appl. Phys. A. 2018. V. 124. P. 833. https://doi.org/10.1007/s00339-018-2256-3
- Korobeishchikov N.G., Nikolaev I.V., Atuchin V.V., Prosvirin I.P., Kapishnikov A.V., Tolstogouzov A., Fu D.J. // Mater. Res. Bull. 2023. V. 158. Р. 112082. https://doi.org/10.1016/j.materresbull.2022.112082
- Ieshkin A.E., Kireev D.S., Ermakov Yu.A., Trifonov A.S., Presnov D.E., Garshev A.V., Anufriev Yu.V., Prokhorova I.G., Krupenin V.A., Chernysh V.S. // Nucl. Instrum. Methods Phys. Res. B. 2018. V. 421. P. 27. https://doi.org/10.1016/j.nimb.2018.02.019
- Teo E.J., Toyoda N., Yang C., Bettiol A.A., Teng J.H. // Appl. Phys. A. 2014. V. 117. P. 719. https://doi.org/10.1007/s00339-014-8728-1
- Коробейщиков Н.Г., Николаев И.В., Роенко М.А. // ПЖТФ. 2019. Т. 45, № 6. С. 30. https://doi.org/10.21883/PJTF.2019.06.47496.17646 (Korobeishchikov N.G., Nikolaev I.V., Roenko M.A. // Tech. Phys. Lett. 2019. V. 45. No.3. P. 274. https://doi.org/10.1134/S1063785019030295).
- Korobeishchikov N.G., Nikolaev I.V., Roenko M.A. // Nucl. Instrum. Methods Phys. Res. B. 2019. V. 438. P. 1. https://doi.org/10.1016/j.nimb.2018.10.019
- Lozano O., Chen Q.Y., Tilakaratne B.P., Seo H.W., Wang X.M., Wadekar P.V., Chinta P.V., Tu L.W., Ho N.J., Wijesundera D., Chu W.K. // AIP Adv. 2013. V. 3. Р. 062107. https://doi.org/10.1063/1.4811171
- Sumie K., Toyoda N., Yamada I. // Nucl. Instrum. Methods Phys. Res. B. 2013. V. 307. P. 290. http://doi.org/10.1016/j.nimb.2013.01.087
- Tilakaratne B.P., Chen Q.Y., Chu W.K. // Materials. 2017. V. 10. Р. 1056. https://doi.org/10.3390/ma10091056
- Toyoda N., Tilakaratne B., Saleem I., Chu W.K. // Appl. Phys. Rev. 2019. V. 6. Р. 020901. https://doi.org/10.1063/1.5030500
- Zeng X., Pelenovich V., Xing B., Rakhimov R., Zuo W., Tolstogouzov A., Liu C., Fu D., Xiao X. // Beilstein J. Nanotechnol. 2020. V. 11. P. 383. https://doi.org/10.3762/bjnano.11.29
- Pelenovich V., Zeng X., Rakhimov R., Zuo W., Tian C., Fu D., Yang B. // Mater. Lett. 2020. V. 264. Р. 127356. https://doi.org/10.1016/j.matlet.2020.127356
- Ieshkin A., Kireev D., Ozerova K., Senatulin B. // Mater. Lett. 2020. V. 272. Р. 127829. https://doi.org/10.1016/j.matlet.2020.127829
- Kireev D.S., Ryabtsev M.O., Tatarintsev A.A., Ieshkin A.E. // Nucl. Instrum. Methods Phys. Res. B. 2022. V. 520. P. 8. https://doi.org/10.1016/j.nimb.2022.03.017
- Иешкин А.Е., Ильина Т.С., Киселев Д.А., Сенатулин Б.Р., Скрылева Е.А., Suchaneck G., Пархоменко Ю.Н. // Физика твердого тела. 2022. Т. 64, Вып. 10. С. 1489. https://doi.org/10.21883/FTT.2022.10.53095.384 (Ieshkin A.E., Ilina T.S., Kiselev D.A., Senatulin B.R., Skryleva E.A., Suchaneck G., Parkhomenko Yu.N.//Phys. Solid State. 2022. V. 64. Iss. 10. P. 1465. https://doi.org/10.21883/PSS.2022.10.54237.384).
- Nikolaev I.V., Korobeishchikov N.G. // Applied Nano. 2021. V. 2. P. 25. https://doi.org/10.3390/applnano2010003
- Kirkpatrick A., Kirkpatrick S., Walsh M., Chau S., Mack M., Harrison S., Svrluga R., Khoury J. //Nucl. Instrum. Methods Phys. Res. B. 2013. V. 307. P. 281. https://doi.org/10.1016/j.nimb.2012.11.084
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 


