New Polymorphic Varieties of Boron Nitride with Diamond-Like TA-Type Phases
- Autores: Ryashentsev D.S.1, Burmistrov V.A.1
- 
							Afiliações: 
							- Chelyabinsk State University
 
- Edição: Nº 6 (2024)
- Páginas: 87-92
- Seção: Articles
- URL: https://rjpbr.com/1028-0960/article/view/664813
- DOI: https://doi.org/10.31857/S1028096024060122
- EDN: https://elibrary.ru/DUGSCU
- ID: 664813
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
In this work, a theoretical study of new polymorphic varieties of boron nitride, which have diamond-like structures with boron and nitrogen atoms in equivalent structural positions, was carried out. The model construction of new phases of boron nitride was performed in the process of crosslinking precursor nanostructures. Single-walled boron nitride nanotubes with chirality indices (3;0), (4;0), and (6;0) were chosen as precursors for the model construction of diamond-like phases. Using the density functional theory method in the generalized gradient approximation, the possibility of stable existence of three new structural varieties of boron nitride with a diamond-like structure was established: BN-TA4, BN-TA5, BN-TA6. The structure of the BN-TA7 diamond-like phase turned out to be unstable and, in the process of geometric optimization, was transformed into the initial structure, a boron nitride nanotube (6;0). As a structural characteristic, the bulk density of the new polymorphs was determined, which is in the range from 2.613 to 3.0836 g/cm3. The sublimation energy of new polymorphic varieties ranges from 17.16 to 17.63 eV/(BN). The value of the band gap near the Fermi energy varies from 5.37 to 5.74 eV.
Sobre autores
D. Ryashentsev
Chelyabinsk State University
							Autor responsável pela correspondência
							Email: ryashentsev_dmitry@mail.ru
				                					                																			                												                	Rússia, 							Chelyabinsk						
V. Burmistrov
Chelyabinsk State University
														Email: burmistrov@csu.ru
				                					                																			                												                	Rússia, 							Chelyabinsk						
Bibliografia
- Wentorf R.H. // The Journal of Chemical Physics. 1957. V. 26. P. 956. https://doi.org./10.1063/1.1745964
- Wentorf R.H. // The Journal of Chemical Physics. 1962. V. 36. P. 1990. https://doi.org./10.1063/1.1732816
- Hoffmann D.M., Doll G.L., Eklund P.C. // Physical Review B. 1984. V. 30. P. 6051. https://doi.org./10.1103/PhysRevB.30.6051.
- Robertson J. // Physical Review B. 1984. V. 29. P. 2131. http://doi.org./10.1103/PhysRevB.29.2131
- Rodríguez-Hernández P., González-Diaz M., Muñoz A. // Physical Review B. 1995. V. 51. P. 14705. https://doi.org./10.1103/PhysRevB.51.14705
- Kurdyumov A.V., Solozhenko V.L., Zelyavsky W.B., Petrusha I.A. // Journal of Physics and Chemistry of Solids. 1993. V. 54. P. 1051. https://doi.org./10.1016/0022- 3697(93)90012-G
- Inaba A., Yoshiasa A. // Japanese Journal of Applied Physics. 1997. V. 36. P. 5644. https://doi.org./10.1143/JJAP.36.5644
- Xu Y.N., Ching W.Y. // Physical Review B. 1993. V. 48. P. 4335. https://doi.org./0.1103/PhysRevB.48.4335
- Xiong J., Di J., Zhu W., Li H. // Journal of Energy Chemistry. 2020. V. 40. P. 99. https://doi.org./10.1016/j.jechem.2019.03.002
- Belenkov E. A., Greshnyakov V. A. // Phys. Solid State. 2016. V. 58. P. 2069. https://doi.org/10.1134/S1063783416100073
- Belenkov E. A., Greshnyakov V. A. // Phys. Solid State. 2015. V. 57. P. 1229. https://doi.org./10.22226/2410-3535-2016-3-159-162
- Ryashentsev D. S., Belenkov E. A. // Chelyabinsk Journal of Physics and Mathematics. 2020. V. 5. P. 480. https://doi.org./10.47475/2500-0101-2020-15408
- Ryashentsev D. S. Belenkov E. A. // Physicochemical aspects of the study of clusters, nanostructures and nanomaterials. 2020. V. 12. P. 493. https://doi.org./10.26456/pcascnn/2020.12.493
- Ryashentsev D.S., Burmistrov V.A. // IOP Publishing. 2022. V. 2373. P. 022067. https://doi.org./10.1088/1742-6596/2373/2/022067
- Грешняков В.А., Беленков Е.А. // ЖЭТФ. 2011. Т. 140. С. 99.
- Беленков Е.А., Грешняков В.А. // Физика твердого тела. 2016. Т. 58. С. 2069.
- Беленков Е.А., Грешняков В.А. // Физика твердого тела. 2015. T. 57. С. 192.
- Koch W., Holthausen. M.C. A Chemist’s Guide to Density Functional Theory. New York: Wiley-VCH. 2002. 293 p.
- Langreth D.C., Mehl M.J. // Physical Review B. 1983. V. 28. P. 1809. https://doi.org./10.1103/physrevb.28.1809
- Giannozzi P., Baroni S., Bonini N., Calandra M., Car R., Cavazzoni C., Ceresoli D., Chiarotti G., Cococcioni M., Dabo I., Corso A., Gironcoli S., Fabris S. // Journal of Physics: Condensed Matter. 2009. V. 21. P. 5502. https://doi.org./10.1088/0953-8984/21/39/395502
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 
