PBPK Modeling as an Alternative Method of Interspecies Extrapolation that Reduces the Use of Animals: A Systematic Review
- Autores: Lancheros Porras K.1, Alves I.2, Novoa D.1
-
Afiliações:
- Departamento de Farmacia, Universidad Nacional de Colombia
- Department of Pharmacy, Federal University of Bahia
- Edição: Volume 31, Nº 1 (2024)
- Páginas: 102-126
- Seção: Anti-Infectives and Infectious Diseases
- URL: https://rjpbr.com/0929-8673/article/view/644126
- DOI: https://doi.org/10.2174/0929867330666230408201849
- ID: 644126
Citar
Texto integral
Resumo
Introduction:Physiologically based pharmacokinetic (PBPK) modeling is a computational approach that simulates the anatomical structure of the studied species and presents the organs and tissues as compartments interconnected by arterial and venous blood flows.
Aim:The aim of this systematic review was to analyze the published articles focused on the development of PBPK models for interspecies extrapolation in the disposition of drugs and health risk assessment, presenting to this modeling an alternative to reduce the use of animals.
Methods:For this purpose, a systematic search was performed in PubMed using the following search terms: "PBPK" and "Interspecies extrapolation". The revision was performed according to PRISMA guidelines.
Results:In the analysis of the articles, it was found that rats and mice are the most commonly used animal models in the PBPK models; however, most of the physiological and physicochemical information used in the reviewed studies were obtained from previous publications. Additionally, most of the PBPK models were developed to extrapolate pharmacokinetic parameters to humans and the main application of the models was for toxicity testing.
Conclusion:PBPK modeling is an alternative that allows the integration of in vitro and in silico data as well as parameters reported in the literature to predict the pharmacokinetics of chemical substances, reducing in large quantity the use of animals that are required in traditional studies.
Palavras-chave
Sobre autores
Karen Lancheros Porras
Departamento de Farmacia, Universidad Nacional de Colombia
Email: info@benthamscience.net
Izabel Alves
Department of Pharmacy, Federal University of Bahia
Email: info@benthamscience.net
Diana Novoa
Departamento de Farmacia, Universidad Nacional de Colombia
Autor responsável pela correspondência
Email: info@benthamscience.net
Bibliografia
- Baumans, V. Use of animals in experimental research: An ethical dilemma? Gene Ther., 2004, 11(Suppl. 1), S64-S66. doi: 10.1038/sj.gt.3302371 PMID: 15454959
- Michael Conn, P. Sourcebook of Models for Biomedical Research; Humana: London: Totowa, N.J., 2008.
- Calabrese, E. Principles of Animal Extrapolation; Lewis Publishers, Inc: Chelsea, Mi, 1991.
- Hubrecht, R.C.; Carter, E. The 3Rs and Humane experimental technique: Implementing change. Animals, 2019, 9(10), 754. doi: 10.3390/ani9100754 PMID: 31575048
- Akhtar, A. The flaws and human harms of animal experimentation. Camb. Q. Healthc. Ethics, 2015, 24(4), 407-419. doi: 10.1017/S0963180115000079 PMID: 26364776
- Van Norman, G.A. Limitations of animal studies for predicting toxicity in clinical trials. JACC Basic Transl. Sci., 2020, 5(4), 387-397. doi: 10.1016/j.jacbts.2020.03.010 PMID: 32363250
- Knudsen, T.B.; Keller, D.A.; Sander, M.; Carney, E.W.; Doerrer, N.G.; Eaton, D.L.; Fitzpatrick, S.C.; Hastings, K.L.; Mendrick, D.L.; Tice, R.R.; Watkins, P.B.; Whelan, M. FutureTox II: In vitro data and in silico models for predictive toxicology. Toxicol. Sci., 2015, 143(2), 256-267. doi: 10.1093/toxsci/kfu234 PMID: 25628403
- Reddy, M.B.; Yang, R.S.H. Harvey. Physiologically Based Pharmacokinetic Modeling: Science and Applications; John Wiley & Sons, Inc: Hoboken, New Jersey, 2005. doi: 10.1002/0471478768
- Thompson, C.V.; Firman, J.W.; Goldsmith, M.R.; Grulke, C.M.; Tan, Y.M.; Paini, A.; Penson, P.E.; Sayre, R.R.; Webb, S.; Madden, J.C. A systematic review of published physiologically-based kinetic models and an assessment of their chemical space coverage. Altern. Lab. Anim., 2021, 49(5), 197-208. doi: 10.1177/02611929211060264 PMID: 34836462
- Fisher, J.W.; Gearhart, J.M.; Lin, Z. Physiologically Based Pharmacokinetic (PBPK) Modeling: Methods and Applications in Toxicology and Risk Assessment; Academic Press: Amsterdam, 2020.
- Tsamandouras, N.; Rostami-Hodjegan, A.; Aarons, L. Combining the bottom up and top down approaches in pharmacokinetic modelling: fitting PBPK models to observed clinical data. Br. J. Clin. Pharmacol., 2015, 79(1), 48-55. doi: 10.1111/bcp.12234 PMID: 24033787
- Research, C. for D. E. and. physiologically based pharmacokinetic analyses-format and content guidance for industry. Available From: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/physiologically-based-pharmacokinetic-analyses-format-and-content-guidance-industry
- EMA. Reporting of physiologically based pharmacokinetic (PBPK) modelling and simulation-European Medicines Agency. Available From: https://www.ema.europa.eu/en/reporting-physiologically-based-pharmacokinetic-pbpkmodelling-simulation
- Jamei, M.; Abrahamsson, B.; Brown, J.; Bevernage, J.; Bolger, M.B.; Heimbach, T.; Karlsson, E.; Kotzagiorgis, E.; Lindahl, A.; McAllister, M.; Mullin, J.M.; Pepin, X.; Tistaert, C.; Turner, D.B.; Kesisoglou, F. Current status and future opportunities for incorporation of dissolution data in PBPK modeling for pharmaceutical development and regulatory applications: OrBiTo consortium commentary. Eur. J. Pharm. Biopharm., 2020, 155, 55-68. doi: 10.1016/j.ejpb.2020.08.005 PMID: 32781025
- Zhang, X.; Yang, Y.; Grimstein, M.; Fan, J.; Grillo, J.A.; Huang, S.M.; Zhu, H.; Wang, Y. Application of PBPK modeling and simulation for regulatory decision making and its impact on US prescribing information: An update on the 2018‐2019 submissions to the US FDAs office of Clinical Pharmacology. J. Clin. Pharmacol., 2020, 60(Suppl. 1), S160-S178. doi: 10.1002/jcph.1767 PMID: 33205429
- Oecd. Guidance Document on Good in Vitro Method Practices (GIVIMP); Oecd Publishing, 2018. Available From: Guidance Document on Good In Vitro Method Practices (GIVIMP) ⋅ en ⋅ OECD
- Li, Z.; Gao, Y.; Yang, C.; Xiang, Y.; Zhang, W.; Zhang, T.; Su, R.; Lu, C.; Zhuang, X. Assessment and confirmation of species difference in nonlinear pharmacokinetics of atipamezole with physiologically based pharmacokinetic modeling. Drug Metab. Dispos., 2020, 48(1), 41-51. doi: 10.1124/dmd.119.089151 PMID: 31699808
- Bogdanffy, M.; Sarangapani, R.; Plowchalk, D.R.; Jarabek, A.; Andersen, M.E. A biologically based risk assessment for vinyl acetate-induced cancer and noncancer inhalation toxicity. Toxicol. Sci., 1999, 51(1), 19-35. doi: 10.1093/toxsci/51.1.19 PMID: 10496674
- Lin, Z.; Monteiro-Riviere, N.A.; Kannan, R.; Riviere, J.E. A computational framework for interspecies pharmacokinetics, exposure and toxicity assessment of gold nanoparticles. Nanomedicine, 2016, 11(2), 107-119. doi: 10.2217/nnm.15.177 PMID: 26653715
- Teeguarden, J.G.; Bogdanffy, M.S.; Covington, T.R.; Tan, C.; Jarabek, A.M. A PBPK model for evaluating the impact of aldehyde dehydrogenase polymorphisms on comparative rat and human nasal tissue acetaldehyde dosimetry. Inhal. Toxicol., 2008, 20(4), 375-390. doi: 10.1080/08958370801903750 PMID: 18302046
- Yang, X.; Zhou, Y.F.; Yu, Y.; Zhao, D.H.; Shi, W.; Fang, B.H.; Liu, Y.H. A physiologically based pharmacokinetic model for quinoxaline-2-carboxylic acid in rats, extrapolation to pigs. J. Vet. Pharmacol. Ther., 2015, 38(1), 55-64. doi: 10.1111/jvp.12143 PMID: 25378053
- Yuan, L.G.; Luo, X.Y.; Zhu, L.X.; Wang, R.; Liu, Y.H. A physiologically based pharmacokinetic model for valnemulin in rats and extrapolation to pigs. J. Vet. Pharmacol. Ther., 2011, 34(3), 224-231. doi: 10.1111/j.1365-2885.2010.01230.x PMID: 20950354
- Hu, Z.Y.; Lu, J.; Zhao, Y. A physiologically based pharmacokinetic model of alvespimycin in mice and extrapolation to rats and humans. Br. J. Pharmacol., 2014, 171(11), 2778-2789. doi: 10.1111/bph.12609 PMID: 24471734
- Frederick, C.B.; Bush, M.L.; Lomax, L.G.; Black, K.A.; Finch, L.; Kimbell, J.S.; Morgan, K.T.; Subramaniam, R.P.; Morris, J.B.; Ultman, J.S. Application of a hybrid computational fluid dynamics and physiologically based inhalation model for interspecies dosimetry extrapolation of acidic vapors in the upper airways. Toxicol. Appl. Pharmacol., 1998, 152(1), 211-231. doi: 10.1006/taap.1998.8492 PMID: 9772217
- Lu, Y.; Rieth, S.; Lohitnavy, M.; Dennison, J.; El-Masri, H.; Barton, H.A.; Bruckner, J.; Yang, R.S.H. Application of PBPK modeling in support of the derivation of toxicity reference values for 1,1,1-trichloroethane. Regul. Toxicol. Pharmacol., 2008, 50(2), 249-260. doi: 10.1016/j.yrtph.2007.12.001 PMID: 18226845
- Bi, Y.; Deng, J.; Murry, D.J.; An, G. A whole-body physiologically based pharmacokinetic model of gefitinib in mice and scale-up to humans. AAPS J., 2016, 18(1), 228-238. doi: 10.1208/s12248-015-9836-3 PMID: 26559435
- Chou, W.C.; Lin, Z. Bayesian evaluation of a physiologically based pharmacokinetic (PBPK) model for perfluorooctane sulfonate (PFOS) to characterize the interspecies uncertainty between mice, rats, monkeys, and humans: Development and performance verification. Environ. Int., 2019, 129, 408-422. doi: 10.1016/j.envint.2019.03.058 PMID: 31152982
- Aborig, M.; Malik, P.R.V.; Nambiar, S.; Chelle, P.; Darko, J.; Mutsaers, A.; Edginton, A.N.; Fleck, A.; Osei, E.; Wettig, S. Biodistribution and physiologically-based pharmacokinetic modeling of gold nanoparticles in mice with interspecies extrapolation. Pharmaceutics, 2019, 11(4), 179. doi: 10.3390/pharmaceutics11040179 PMID: 31013763
- McMullin, T. S.; Yang, Y.; Campbell, J.; Clewell, H. J.; Plotzke, K.; Andersen, M. E. Development of an integrated multi-species and multi-dose route PBPK model for Volatile Methyl Siloxanes - D4 and D5. Regulatory toxicology and pharmacology. RTP, 2016, 74(Suppl), S1-13.
- Yang, X.; Morris, S.M.; Gearhart, J.M.; Ruark, C.D.; Paule, M.G.; Slikker, W., Jr; Mattison, D.R.; Vitiello, B.; Twaddle, N.C.; Doerge, D.R.; Young, J.F.; Fisher, J.W. Development of a physiologically based model to describe the pharmacokinetics of methylphenidate in juvenile and adult humans and nonhuman primates. PLoS One, 2014, 9(9), e106101. doi: 10.1371/journal.pone.0106101 PMID: 25184666
- Troutman, J.A.; Rick, D.L.; Stuard, S.B.; Fisher, J.; Bartels, M.J. Development of a physiologically-based pharmacokinetic model of 2-phenoxyethanol and its metabolite phenoxyacetic acid in rats and humans to address toxicokinetic uncertainty in risk assessment. Regul. Toxicol. Pharmacol., 2015, 73(2), 530-543. doi: 10.1016/j.yrtph.2015.07.012 PMID: 26188115
- Methaneethorn, J.; Naosang, K.; Kaewworasut, P.; Poomsaidorn, C.; Lohitnavy, M. Development of a physiologically-based pharmacokinetic Model of Δ 9-Tetrahydrocannabinol in mice, rats, and pigs. Eur. J. Drug Metab. Pharmacokinet., 2020, 45(4), 487-494. doi: 10.1007/s13318-020-00616-6 PMID: 32253721
- Sweeney, L.M.; Kirman, C.R.; Gannon, S.A.; Thrall, K.D.; Gargas, M.L.; Kinzell, J.H. Development of a physiologically based pharmacokinetic (PBPK) model for methyl iodide in rats, rabbits, and humans. Inhal. Toxicol., 2009, 21(6), 552-582. doi: 10.1080/08958370802601569 PMID: 19519155
- Campbell, J.L., Jr; Bull, R.J.; Clewell, H.J., III Development of a rat and human PBPK model for bromate and estimation of human equivalent concentrations in drinking water. Int. J. Environ. Health Res., 2021, 31(8), 951-962. doi: 10.1080/09603123.2019.1702628 PMID: 31850798
- Peters, S.A. Identification of intestinal loss of a drug through physiologically based pharmacokinetic simulation of plasma concentration-time profiles. Clin. Pharmacokinet., 2008, 47(4), 245-259. doi: 10.2165/00003088-200847040-00003 PMID: 18336054
- Sarangapani, R.; Teeguarden, J.G.; Gentry, P.R.; Clewell, H.J., III; Barton, H.A.; Bogdanffy, M.S. Interspecies dose extrapolation for inhaled dimethyl sulfate: A PBPK model-based analysis using nasal cavity N7-methylguanine adducts. Inhal. Toxicol., 2004, 16(9), 593-605. doi: 10.1080/08958370490464562 PMID: 16036752
- Li, X.; Yang, Y.; Zhang, Y.; Wu, C.; Jiang, Q.; Wang, W.; Li, H.; Li, J.; Luo, C.; Wu, W.; Wang, Y.; Zhang, T. Justification of biowaiver and dissolution rate specifications for piroxicam immediate release products based on physiologically based pharmacokinetic modeling: An in-depth analysis. Mol. Pharm., 2019, 16(9), 3780-3790. doi: 10.1021/acs.molpharmaceut.9b00350 PMID: 31398041
- Yanagi, M.; Kamiya, Y.; Murayama, N.; Banju, K.; Shimizu, M.; Yamazaki, H. Metabolic profiles for the pyrrolizidine alkaloid neopetasitenine and its metabolite petasitenine in humans extrapolated from rat in vivo and in vitro data sets using a simplified physiologically based pharmacokinetic model. J. Toxicol. Sci., 2021, 46(9), 391-399. doi: 10.2131/jts.46.391 PMID: 34470991
- Noh, K.; Yang, Q.J.; Sekhon, L.; Quach, H.P.; Chow, E.C.Y.; Pang, K.S. Noteworthy idiosyncrasies of 1α,25‐dihydroxyvitamin D 3 kinetics for extrapolation from mouse to man: Commentary. Biopharm. Drug Dispos., 2020, 41(3), 126-148. doi: 10.1002/bdd.2223 PMID: 32319119
- Sarangapani, R.; Teeguarden, J.G.; Cruzan, G.; Clewell, H.J.; Andersen, M.E. Physiologically based pharmacokinetic modeling of styrene and styrene oxide respiratory-tract dosimetry in rodents and humans. Inhal. Toxicol., 2002, 14(8), 789-834. doi: 10.1080/08958370290084647 PMID: 12122565
- Lu, X.F.; Bi, K.; Chen, X. Physiologically based pharmacokinetic model of docetaxel and interspecies scaling: comparison of simple injection with folate receptor-targeting amphiphilic copolymer-modified liposomes. Xenobiotica, 2016, 46(12), 1093-1104. doi: 10.3109/00498254.2016.1155128 PMID: 26986924
- Hudachek, S.F.; Gustafson, D.L. Physiologically based pharmacokinetic model of lapatinib developed in mice and scaled to humans. J. Pharmacokinet. Pharmacodyn., 2013, 40(2), 157-176. doi: 10.1007/s10928-012-9295-8 PMID: 23315145
- Dallas, C.E.; Chen, X.M.; Muralidhara, S.; Varkonyi, P.; Tackett, R.L.; Bruckner, J.V. Physiologically based pharmacokinetic model useful in prediction of the influence of species, dose, and exposure route on perchloroethylene pharmacokinetics. J. Toxicol. Environ. Health, 1995, 44(3), 301-317. doi: 10.1080/15287399509531961 PMID: 7897693
- Chen, Y.; Zhao, K.; Liu, F.; Xie, Q.; Zhong, Z.; Miao, M.; Liu, X.; Liu, L. Prediction of deoxypodophyllotoxin disposition in mouse, rat, monkey, and dog by physiologically based pharmacokinetic model and the extrapolation to human. Front. Pharmacol., 2016, 7, 488. doi: 10.3389/fphar.2016.00488 PMID: 28018224
- Pierrillas, P.B.; Henin, E.; Ball, K.; Ogier, J.; Amiel, M.; Kraus-Berthier, L.; Chenel, M.; Bouzom, F.; Tod, M. Prediction of human nonlinear pharmacokinetics of a new Bcl-2 inhibitor using PBPK modeling and interspecies extrapolation strategy. Drug Metab. Dispos., 2019, 47(6), 648-656. doi: 10.1124/dmd.118.085605 PMID: 30940629
- Béliveau, M.; Lipscomb, J.; Tardif, R.; Krishnan, K. Quantitative structure-property relationships for interspecies extrapolation of the inhalation pharmacokinetics of organic chemicals. Chem. Res. Toxicol., 2005, 18(3), 475-485. doi: 10.1021/tx049722k PMID: 15777087
- Sweeney, L.M.; Phillips, E.A.; Goodwin, M.R.; Bannon, D.I. Toxicokinetic model development for the insensitive munitions component 3-Nitro-1,2,4-Triazol-5-One. Int. J. Toxicol., 2015, 34(5), 408-416. doi: 10.1177/1091581815589000 PMID: 26060267
- Pande, P.; Madeen, E.P.; Williams, D.E.; Crowell, S.R.; Ognibene, T.J.; Turteltaub, K.W.; Corley, R.A.; Smith, J.N. Translating dosimetry of Dibenzodef,pchrysene (DBC) and metabolites across dose and species using physiologically based pharmacokinetic (PBPK) modeling. Toxicol. Appl. Pharmacol., 2022, 438, 115830. doi: 10.1016/j.taap.2021.115830 PMID: 34933053
- Kirman, C.R.; Sweeney, L.M.; Corley, R.; Gargas, M.L. Using physiologically-based pharmacokinetic modeling to address nonlinear kinetics and changes in rodent physiology and metabolism due to aging and adaptation in deriving reference values for propylene glycol methyl ether and propylene glycol methyl ether acetate. Risk Anal., 2005, 25(2), 271-284. doi: 10.1111/j.1539-6924.2005.00588.x PMID: 15876203
- Animal Models of Thrombosis and Hemorrhagic Diseases; National Academies Press: Washington, D.C., 1976, pp. 189-204. doi: 10.17226/19903
- Hau, J.; Van, G.L. Handbook of Laboratory Animal Science; Crc Press: Boca Raton, Fla., 2003, p. 2.
- Sweeney, L.M.; Gargas, M.L. Route-to-route extrapolation of 1,2-dichloroethane studies from the oral route to inhalation using physiologically based pharmacokinetic models. Regul. Toxicol. Pharmacol., 2016, 81, 468-479. doi: 10.1016/j.yrtph.2016.10.005 PMID: 27756559
- Johnson, P.D.; Besselsen, D.G. Practical aspects of experimental design in animal research. ILAR J., 2002, 43(4), 202-206. doi: 10.1093/ilar.43.4.202 PMID: 12391395
- Animal Models of Diabetes; King, A.J.F., Ed.; Springer US: New York, NY, 2020. doi: 10.1007/978-1-0716-0385-7
- Davies, B.; Morris, T. Physiological parameters in laboratory animals and humans. Pharm. Res., 1993, 10(7), 1093-1095. doi: 10.1023/A:1018943613122 PMID: 8378254
- Brown, R.P.; Delp, M.D.; Lindstedt, S.L.; Rhomberg, L.R.; Beliles, R.P. Physiological parameter values for physiologically based pharmacokinetic models. Toxicol. Ind. Health, 1997, 13(4), 407-484. doi: 10.1177/074823379701300401 PMID: 9249929
- Upton, R.N. Organ weights and blood flows of sheep and pig for physiological pharmacokinetic modelling. J. Pharmacol. Toxicol. Methods, 2008, 58(3), 198-205. doi: 10.1016/j.vascn.2008.08.001 PMID: 18775498
- Lin, L.; Wong, H. Predicting oral drug absorption: Mini review on physiologically-based pharmacokinetic models. Pharmaceutics, 2017, 9(4), 41. doi: 10.3390/pharmaceutics9040041 PMID: 28954416
- Lipscomb, J.C.; Haddad, S.; Poet, T.; Krishnan, K. Physiologically-based pharmacokinetic (PBPK) models in toxicity testing and risk assessment. Adv. Exp. Med. Biol., 2012, 745, 76-95. doi: 10.1007/978-1-4614-3055-1_6 PMID: 22437814
- Gibaldi, M.; Lee, M. Archana Desai; American Society Of Health-System Pharmacists. Gibaldis Drug Delivery Systems in Pharmaceutical Care; American Society Of Health-System Pharmacists: Bethesda, Md., 2007.
- Turner, P.V.; Brabb, T.; Pekow, C.; Vasbinder, M.A. Administration of substances to laboratory animals: Routes of administration and factors to consider. J. Am. Assoc. Lab. Anim. Sci., 2011, 50(5), 600-613. PMID: 22330705
- Diep, U.; Chudow, M.; Sunjic, K.M. Pharmacokinetic changes in liver failure and impact on drug therapy. AACN Adv. Crit. Care, 2017, 28(2), 93-101. doi: 10.4037/aacnacc2017948 PMID: 28592464
- Shah, V.P.; Amidon, G.L.; Lennernas, H.; Shah, V.P.; Crison, J.R. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability, Pharm Res 12, 413-420, 1995--backstory of BCS. AAPS J., 2014, 16(5), 894-898. doi: 10.1208/s12248-014-9620-9 PMID: 24961917
- Papich, M.G.; Martinez, M.N. Applying Biopharmaceutical Classification System (BCS) criteria to predict oral absorption of drugs in dogs: Challenges and pitfalls. AAPS J., 2015, 17(4), 948-964. doi: 10.1208/s12248-015-9743-7 PMID: 25916691
- Liu, Y.; Sun, J.; Zhong, L.; Li, Y.; Er, A.N.; Li, T.; Yang, L.; Dong, L. Combination of a biopharmaceutic classification system and physiologically based pharmacokinetic models to predict absorption properties of baicalein in vitro and in vivo. J. Tradit. Chin. Med. Sci., 2021, 8(3), 238-247. doi: 10.1016/j.jtcms.2021.07.006
- Hansmann, S.; Darwich, A.; Margolskee, A.; Aarons, L.; Dressman, J. Forecasting oral absorption across biopharmaceutics classification system classes with physiologically based pharmacokinetic models. J. Pharm. Pharmacol., 2016, 68(12), 1501-1515. doi: 10.1111/jphp.12618 PMID: 27781273
- Alqahtani, M.S.; Kazi, M.; Alsenaidy, M.A.; Ahmad, M.Z. Advances in oral drug delivery. Front. Pharmacol., 2021, 12, 618411. doi: 10.3389/fphar.2021.618411 PMID: 33679401
- di Cagno, M.P.; Clarelli, F.; Våbenø, J.; Lesley, C.; Rahman, S.D.; Cauzzo, J.; Franceschinis, E.; Realdon, N.; Stein, P.C. Experimental determination of drug diffusion coefficients in unstirred aqueous environments by temporally resolved concentration measurements. Mol. Pharm., 2018, 15(4), 1488-1494. doi: 10.1021/acs.molpharmaceut.7b01053 PMID: 29462563
- Lin, W.; Chen, Y.; Unadkat, J.D.; Zhang, X.; Wu, D.; Heimbach, T. Applications, challenges, and outlook for pbpk modeling and simulation: A regulatory, industrial and academic perspective. Pharm. Res., 2022, 39(8), 1701-1731. doi: 10.1007/s11095-022-03274-2 PMID: 35552967
- Wang, Y.; Cder, O. PBPK Current Status and Challenges: A Regulatory Perspective. In: Development of Best Practices in Physiologically Based Pharmacokinetic Modeling to Support Clinical Pharmacology Regulatory Decision-Making; , 2019.
- Manolis, E.; Musuamba, F.T.; Karlsson, K.E. The european medicines agency experience with pediatric dose selection. J. Clin. Pharmacol., 2021, 61(Suppl. 1), S22-S27. doi: 10.1002/jcph.1863 PMID: 34185894
- Maharaj, A.R.; Edginton, A.N. Physiologically based pharmacokinetic modeling and simulation in pediatric drug development. CPT Pharmacometrics Syst. Pharmacol., 2014, 3(11), 1-13. doi: 10.1038/psp.2014.45 PMID: 25353188
- Rosenbaum, S. Basic Pharmacokinetics and Pharmacodynamics: An Integrated Textbook and Computer Simulations; John Wiley & Sons, Inc: Hoboken, New Jersey, 2017.
- Onetto, A.J.; Sharif, S. Drug Distribution; StatPearls, 2022.
- Espié, P.; Tytgat, D.; Sargentini-Maier, M.L.; Poggesi, I.; Watelet, J.B. Physiologically based pharmacokinetics (PBPK). Drug Metab. Rev., 2009, 41(3), 391-407. doi: 10.1080/10837450902891360 PMID: 19601719
- Khalil, F.; Läer, S. Physiologically based pharmacokinetic modeling: Methodology, applications, and limitations with a focus on its role in pediatric drug development. J. Biomed. Biotechnol., 2011, 2011, 1-13. doi: 10.1155/2011/907461 PMID: 21716673
- Yoon, M.; Kedderis, G.L.; Yang, Y.; Allen, B.C.; Yan, G.Z.; Clewell, H.J. Use of in vitro data in PBPK Models: An example of in vitro to in vivo extrapolation with carbaryl. ACS Symposium Series, 2012, pp. 323-338. doi: 10.1021/bk-2012-1099.ch020
- Kundu, P.K.; Cohen, I.M.; Dowling, D.R. Fluid Mechanics; Academic Press: Waltham, Ma, 2012.
- Vulović, A.; uterič, T.; Cvijić, S.; Ibrić, S.; Filipović, N. Coupled in silico platform: Computational fluid dynamics (CFD) and physiologically-based pharmacokinetic (PBPK) modelling. Eur. J. Pharm. Sci., 2018, 113, 171-184. doi: 10.1016/j.ejps.2017.10.022 PMID: 29054499
- Afshar, M.; Lanoue, A.; Sallantin, J. Multiobjective/multicriteria optimization and decision support in drug discovery. Comprehensive Medicinal Chemistry, 2007, II, 767-774. doi: 10.1016/B0-08-045044-X/00275-3
- Peyret, T.; Krishnan, K. QSARs for PBPK modelling of environmental contaminants. SAR QSAR Environ. Res., 2011, 22(1-2), 129-169. doi: 10.1080/1062936X.2010.548351 PMID: 21391145
- Gaohua, L.; Miao, X.; Dou, L. Crosstalk of physiological pH and chemical pKa under the umbrella of physiologically based pharmacokinetic modeling of drug absorption, distribution, metabolism, excretion, and toxicity. Expert Opin. Drug Metab. Toxicol., 2021, 17(9), 1103-1124. doi: 10.1080/17425255.2021.1951223 PMID: 34253134
- Peters, S.A. Physiologically Based Pharmacokinetic (PBPK) modeling and simulations: Principles, methods, and applications in the pharmaceutical industry; John Wiley & Sons, Inc: Hoboken, Nj, 2022.
- Mintun, M.; Himmelstein, K.J.; Schroder, R.L.; Gibaldi, M.; Shen, D.D. Tissue distribution kinetics of tetraethylammonium ion in the rat. J. Pharmacokinet. Biopharm., 1980, 8(4), 373-409. doi: 10.1007/BF01059385 PMID: 7431228
- Marcoline, F.; Grabe, M.; Nayak, S.; Zahnley, T.; Oster, G.; Macey, R. Berkeley Madonna Users Guide; University of California Department of Molecular and Cellular Biolog, 2020.
- El-Khateeb, E.; Burkhill, S.; Murby, S.; Amirat, H.; Rostami-Hodjegan, A.; Ahmad, A. Physiological‐based pharmacokinetic modeling trends in pharmaceutical drug development over the last 20‐years; in‐depth analysis of applications, organizations, and platforms. Biopharm. Drug Dispos., 2021, 42(4), 107-117. doi: 10.1002/bdd.2257 PMID: 33325034
- Kuepfer, L. Prospects and limitations of physiologically-based pharmacokinetic modelling for cross-species extrapolation. SVU-International Journal of Veterinary Sciences, 2019, 2(2), 45-51. doi: 10.21608/svu.2019.14193.1020 PMID: 31108904
- Yuan, Y.; He, Q.; Zhang, S.; Li, M.; Tang, Z.; Zhu, X.; Jiao, Z.; Cai, W.; Xiang, X. Application of physiologically based pharmacokinetic modeling in preclinical studies: A feasible strategy to practice the principles of 3Rs. Front. Pharmacol., 2022, 13, 895556. doi: 10.3389/fphar.2022.895556 PMID: 35645843
Arquivos suplementares
