Влияние эстрадиола на углеводно-жировой обмен и активность системы FGF21 у самок мышей C57BL/6 при краткосрочном содержании на диете кафетерия

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Диета кафетерия провоцирует развитие ожирения и метаболического синдрома, снижает чувствительность к инсулину и толерантность к глюкозе. Фактор роста фибробластов 21 (FGF21), гормон печени, способствует адаптации к потреблению сладкой и жирной пищи. Самки мышей менее чувствительны к повреждающему действию диеты кафетерия, чем самцы, что может быть связано с влиянием эстрадиола на активность системы FGF21: на экспрессию гена Fgf21 в печени, на уровень гормона в крови или на уровень рецепторов и корецепторов бета-клото, которые определяют чувствительность тканей к FGF21. Проверка этого предположения явилась целью данной работы. Влияние эстрадиола (10 мкг/животное раз в три дня) оценивали у овариэктомированных самок мышей C57BL/6, потреблявших диету кафетерия (стандартный корм, сало и печенье) в течение двух недель. Определяли показатели углеводно-жирового обмена, вкусовые предпочтения и активность системы FGF21.

Овариэктомия повышала массу тела и подкожного жира, потребление сала, экспрессию гена Pomc в гипоталамусе, снижала экспрессию рецепторов эстрадиола в печени и потребление печенья. Эстрадиол существенного влияния на данные показатели не оказывал. У овариэктомированных самок с недостаточностью эстрадиола уровень в крови холестерина и экспрессия в печени гена глюкоза-6-фосфатазы были ниже, чем у ложнооперированных самок, и эстрадиол нормализовал данные показатели. Овариэктомия понижала, а введение эстрадиола повышало уровень мРНК корецептора бета-клото (Klb) в печени и в гипоталамусе. Эти результаты предполагают, что на начальных этапах потребления сладкой и жирной пищи эстрадиол повышает чувствительность печени и гипоталамуса к FGF21 и усиливает тем самым вклад системы FGF21 в процессы адаптации к диете кафетерия.

Полный текст

Доступ закрыт

Об авторах

Т. В. Яковлева

Институт цитологии и генетики СО РАН

Автор, ответственный за переписку.
Email: tatyanajakovleva@yandex.ru
Россия, Новосибирск

А. Ю. Казанцева

Институт цитологии и генетики СО РАН

Email: tatyanajakovleva@yandex.ru
Россия, Новосибирск

К. Ю. Мамонтова

Институт цитологии и генетики СО РАН; Новосибирский государственный университет

Email: tatyanajakovleva@yandex.ru
Россия, Новосибирск; Новосибирск

Н. М. Бажан

Институт цитологии и генетики СО РАН; Новосибирский государственный университет

Email: tatyanajakovleva@yandex.ru
Россия, Новосибирск; Новосибирск

Список литературы

  1. Gadde KM, Martin CK, Berthoud HR, Heymsfield SB (2018) Obesity: Pathophysiology and Management. J Am Coll Cardiol 71(1): 69–84. https://doi.org/10.1016/j.jacc.2017.11.011
  2. Bruder-Nascimento T, Ekeledo OJ, Anderson R, Le HB, Belin de Chantemèle EJ (2017) Long Term High Fat Diet Treatment: An Appropriate Approach to Study the Sex-Specificity of the Autonomic and Cardiovascular Responses to Obesity in Mice. Front Physiol 8: 32. https://doi.org/10.3389/fphys.2017.00032
  3. Hwang LL, Wang CH, Li TL, Chang SD, Lin LC, Chen CP, Chen CT, Liang KC, Ho IK, Yang WS, Chiou LC (2010) Sex differences in high-fat diet-induced obesity, metabolic alterations and learning, and synaptic plasticity deficits in mice. Obesity (Silver Spring) 18(3): 463–469. https://doi.org/10.1038/oby.2009.273
  4. Bazhan NM, Iakovleva TV, Dubinina AD, Makarova EN (2020) Impact of sex on the adaptation of adult mice to long consumption of sweet-fat diet. Vavilov Zhurn Genet Selekt 24(8): 844–852. https://doi.org/10.18699/VJ20.682
  5. Tramunt B, Smati S, Grandgeorge N, Lenfant F, Arnal JF, Montagner A, Gourdy P (2020) Sex differences in metabolic regulation and diabetes susceptibility. Diabetologia 63(3): 453–461. https://doi.org/10.1007/s00125-019-05040-3
  6. Freire-Regatillo A, Fernández-Gómez MJ, Díaz F, Barrios V, Sánchez-Jabonero I, Frago LM, Argente J, García-Segura LM, Chowen JA (2020) Sex differences in the peripubertal response to a short-term, high-fat diet intake. J Neuroendocrinol 32(1): e12756. https://doi.org/10.1111/jne.12756
  7. Huang KP, Ronveaux CC, Knotts TA, Rutkowsky JR, Ramsey JJ, Raybould HE (2020) Sex differences in response to short-term high fat diet in mice. Physiol Behav 221: 112894. https://doi.org/10.1016/j.physbeh.2020.112894
  8. Nishimura T, Nakatake Y, Konishi M, Itoh N (2000) Identification of a novel FGF, FGF-21, preferentially expressed in the liver. Biochim Biophys Acta 1492(1): 203. https://doi.org/10.1016/s0167-4781(00)00067-1
  9. Zhang P, Kuang H, He Y, Idiga SO, Li S, Chen Z, Yang Z, Cai X, Zhang K, Potthoff MJ, Xu Y, Lin JD (2018) NRG1-Fc improves metabolic health via dual hepatic and central action. JCI Insight 3(5): e98522. https://doi.org/10.1172/jci.insight.98522
  10. Fon Tacer K, Bookout AL, Ding X, Kurosu H, John GB, Wang L, Goetz R, Mohammadi M, Kuroo M, Mangelsdorf DJ, Kliewer SA (2010) Research resource: Comprehensive expression atlas of the fibroblast growth factor system in adult mouse. Mol Endocrinol 24(10): 2050. https://doi.org/10.1210/me.2010-0142
  11. Johnson CL, Weston JY, Chadi SA, Fazio EN, Huff MW, Kharitonenkov A, Köester A, Pin CL (2009) Fibroblast growth factor 21 reduces the severity of cerulein-induced pancreatitis in mice. Gastroenterology 137(5): 1795–1804. https://doi.org/10.1053/j.gastro.2009.07.064
  12. Patel V, Adya R, Chen J, Ramanjaneya M, Bari MF, Bhudia SK, Hillhouse EW, Tan BK, Randeva HS (2014) Novel insights into the cardio-protective effects of FGF21 in lean and obese rat hearts. PLoS One 9(2): e87102. https://doi.org/10.1371/journal.pone.0087102
  13. Bazhan N, Jakovleva T, Balyibina N, Dubinina A, Denisova E, Feofanova N, Makarova E (2019) Sex Dimorphism in the Fgf21 Gene Expression in Liver and Adipose Tissues is Dependent on the Metabolic Condition. Online J Biol Sci 19(1): 28–36.
  14. Kharitonenkov A, Shiyanova TL, Koester A, Ford AM, Micanovic R, Galbreath EJ, Sandusky GE, Hammond LJ, Moyers JS, Owens RA, Gromada J, Brozinick JT, Hawkins ED, Wroblewski VJ, Li DS, Mehrbod F, Jaskunas SR, Shanafelt AB (2005) FGF-21 as a novel metabolic regulator. J Clin Invest 115(6): 1627–1635. https://doi.org/10.1172/JCI23606
  15. Kurosu H, Choi M, Ogawa Y, Dickson AS, Goetz R, Eliseenkova AV, Mohammadi M, Rosenblatt KP, Kliewer SA, Kuro-o M (2007) Tissue-specific expression of betaKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. J Biol Chem 282(37): 26687. https://doi.org/10.1074/jbc.M704165200
  16. Suzuki M, Uehara Y, Motomura-Matsuzaka K, Oki J, Koyama Y, Kimura M, Asada M, Komi-Kuramochi A, Oka S, Imamura T (2008) betaKlotho is required for fibroblast growth factor (FGF) 21 signaling through FGF receptor (FGFR) 1c and FGFR3c. Mol Endocrinol 22(4): 1006. https://doi.org/10.1210/me.2007-0313
  17. Bookout AL, de Groot MH, Owen BM, Lee S, Gautron L, Lawrence HL, Ding X, Elmquist JK, Takahashi JS, Mangelsdorf DJ, Kliewer SA (2013) FGF21 regulates metabolism and circadian behavior by acting on the nervous system. Nat Med 19(9): 1147. https://doi.org/10.1038/nm.3249
  18. Jensen-Cody SO, Flippo KH, Claflin KE, Yavuz Y, Sapouckey SA, Walters GC, Usachev YM, Atasoy D, Gillum MP, Potthoff MJ (2020) FGF21 Signals to Glutamatergic Neurons in the Ventromedial Hypothalamus to Suppress Carbohydrate Intake. Cell Metab 32(2): 273–286.e6. https://doi.org/10.1016/j.cmet.2020.06.008
  19. Yang ZH, Miyahara H, Takeo J, Katayama M (2012) Diet high in fat and sucrose induces rapid onset of obesity-related metabolic syndrome partly through rapid response of genes involved in lipogenesis, insulin signalling and inflammation in mice. Diabetol Metab Syndr 4(1): 32. https://doi.org/10.1186/1758-5996-4-32
  20. Lan T, Morgan DA, Rahmouni K, Sonoda J, Fu X, Burgess SC, Holland WL, Kliewer SA, Mangelsdorf DJ (2017) FGF19, FGF21, and an FGFR1/β-Klotho-Activating Antibody Act on the Nervous System to Regulate Body Weight and Glycemia. Cell Metab 26(5): 709–718.e3. https://doi.org/10.1016/j.cmet.2017.09.005
  21. Coskun T, Bina HA, Schneider MA, Dunbar JD, Hu CC, Chen Y, Moller DE, Kharitonenkov A (2008) Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 149(12): 6018–6027. https://doi.org/10.1210/en.2008-0816
  22. Larson KR, Chaffin AT, Goodson ML, Fang Y, Ryan KK (2019) Fibroblast Growth Factor-21 Controls Dietary Protein Intake in Male Mice. Endocrinology 160(5): 1069–1080. https://doi.org/10.1210/en.2018-01056
  23. Von Holstein-Rathlou S, Gillum MP (2019) Fibroblast growth factor 21: an endocrine inhibitor of sugar and alcohol appetite. J Physiol 597(14): 3539–3548. https://doi.org/10.1113/JP277117
  24. Hua L, Zhuo Y, Jiang D, Li J, Huang X, Zhu Y, Li Z, Yan L, Jin C, Jiang X, Che L, Fang Z, Lin Y, Xu S, Li J, Feng B, Wu D (2018) Identification of hepatic fibroblast growth factor 21 as a mediator in 17β-estradiol-induced white adipose tissue browning. FASEB J 32(10): 5602–5611. https://doi.org/10.1096/fj.201800240R
  25. Allard C, Bonnet F, Xu B, Coons L, Albarado D, Hill C, Fagherazzi G, Korach KS, Levin ER, Lefante J, Morrison C, Mauvais-Jarvis F (2019) Activation of hepatic estrogen receptor-α increases energy expenditure by stimulating the production of fibroblast growth factor 21 in female mice. Mol Metab 22: 62–70. https://doi.org/10.1016/j.molmet.2019.02.002
  26. Jakovleva TV, Kazantseva AY, Dubinina AD, Balybina NY, Baranov KO, Makarova EN, Bazhan NM (2022) Estradiol-dependent and independent effects of FGF21 in obese female mice. Vavilov Zhurn Genet Selekt 26(2): 159–168. https://doi.org/10.18699/VJGB-22-20
  27. Sampey BP, Vanhoose AM, Winfield HM, Freemerman AJ, Muehlbauer MJ, Fueger PT, Newgard CB, Makowski L (2011) Cafeteria diet is a robust model of human metabolic syndrome with liver and adipose inflammation: comparison to high-fat diet. Obesity (Silver Spring, Md.) 19(6): 1109–1117. https://doi.org/10.1038/oby.2011.18
  28. Gao H, Bryzgalova G, Hedman E, Khan A, Efendic S, Gustafsson JA, Dahlman-Wright K (2006) Long-term administration of estradiol decreases expression of hepatic lipogenic genes and improves insulin sensitivity in ob/ob mice: a possible mechanism is through direct regulation of signal transducer and activator of transcription 3. Mol Endocrinol 20(6): 1287–1299. https://doi.org/10.1210/me.2006-0012
  29. Thammacharoen S, Geary N, Lutz TA, Ogawa S, Asarian L (2009) Divergent effects of estradiol and the estrogen receptor-alpha agonist PPT on eating and activation of PVN CRH neurons in ovariectomized rats and mice. Brain Res 1268: 88–96. https://doi.org/10.1016/j.brainres.2009.02.067
  30. Kim JY, Jo KJ, Kim OS, Kim BJ, Kang DW, Lee KH, Baik HW, Han MS, Lee SK (2010) Parenteral 17beta-estradiol decreases fasting blood glucose levels in non-obese mice with short-term ovariectomy. Life Sci 87(11-12): 358–366. https://doi.org/10.1016/j.lfs.2010.07.009
  31. Roesch SL, Styer AM, Wood GC, Kosak Z, Seiler J, Benotti P, Petrick AT, Gabrielsen J, Strodel WE, Gerhard GS, Still CD, Argyropoulos G (2015) Perturbations of fibroblast growth factors 19 and 21 in type 2 diabetes. PloS One 10(2): e0116928. https://doi.org/10.1371/journal.pone.0116928
  32. Bryzgalova G, Lundholm L, Portwood N, Gustafsson JA, Khan A, Efendic S, Dahlman-Wright K (2008) Mechanisms of antidiabetogenic and body weight-lowering effects of estrogen in high-fat diet-fed mice. Am J Physiol Endocrinol Metab 295(4): E904–E912. https://doi.org/10.1152/ajpendo.90248.2008
  33. Fisher FM, Maratos-Flier E (2016) Understanding the Physiology of FGF21. Annu Rev Physiol 78: 223–241. https://doi.org/10.1146/annurev-physiol-021115-105339
  34. Makarova E, Kazantseva A, Dubinina A, et al. (2021) The Same Metabolic Response to FGF21 Administration in Male and Female Obese Mice Is Accompanied by Sex-Specific Changes in Adipose Tissue Gene Expression. Int J Mol Sci 22(19): 10561. https://doi.org/10.3390/ijms221910561
  35. Liu C, Schönke M, Zhou E, Li Z, Kooijman S, Boon MR, Larsson M, Wallenius K, Dekker N, Barlind L, Peng XR, Wang Y, Rensen PCN (2022) Pharmacological treatment with FGF21 strongly improves plasma cholesterol metabolism to reduce atherosclerosis. Cardiovasc Res 118(2): 489–502. https://doi.org/10.1093/cvr/cvab076
  36. Walf AA, Frye CA (2010) Estradiol reduces anxiety- and depression-like behavior of aged female mice. Physiol Behav 99(2): 169–174. https://doi.org/10.1016/j.physbeh.2009.09.017
  37. Dahir NS, Calder AN, McKinley BJ, Liu Y, Gilbertson TA (2021) Sex differences in fat taste responsiveness are modulated by estradiol. Am J Physiol Endocrinol Metab 320(3): E566– E580. https://doi.org/10.1152/ajpendo.00331.2020
  38. Yang TY, Liang NC (2018) Ovarian hormones mediate running-induced changes in high fat diet choice patterns in female rats. Horm Behav 100: 81–93. https://doi.org/10.1016/j.yhbeh.2018.02.010
  39. Sugaya A, Sugiyama T, Yanase S, Shen XX, Minoura H, Toyoda N (2000) Expression of glucose transporter 4 mRNA in adipose tissue and skeletal muscle of ovariectomized rats treated with sex steroid hormones. Life Sci 66(7): 641–648. https://doi.org/10.1016/s0024-3205(99)00636-0
  40. Fisher FM, Chui PC, Antonellis PJ, Bina HA, Kharitonenkov A, Flier JS, Maratos-Flier E (2010) Obesity is a fibroblast growth factor 21 (FGF21)-resistant state. Diabetes 59(11): 2781– 2789. https://doi.org/10.2337/db10-0193
  41. Hale C, Chen MM, Stanislaus S, Chinookoswong N, Hager T, Wang M, Véniant MM, Xu J (2012) Lack of overt FGF21 resistance in two mouse models of obesity and insulin resistance. Endocrinology 153(1): 69–80. https://doi.org/10.1210/en.2010-1262
  42. Samms RJ, Cheng CC, Kharitonenkov A, Gimeno RE, Adams AC (2016) Overexpression of β-Klotho in Adipose Tissue Sensitizes Male Mice to Endogenous FGF21 and Provides Protection From Diet-Induced Obesity. Endocrinology 157(4): 1467–1480. https://doi.org/10.1210/en.2015-1722
  43. Santoso P, Nakata M, Shiizaki K, Boyang Z, Parmila K, Otgon-Uul Z, Hashimoto K, Satoh T, Mori M, Kuro-o M, Yada T (2017) Fibroblast growth factor 21, assisted by elevated glucose, activates paraventricular nucleus NUCB2/Nesfatin-1 neurons to produce satiety under fed states. Scient Rep 7: 45819. https://doi.org/10.1038/srep45819
  44. BonDurant LD, Potthoff MJ (2018) Fibroblast Growth Factor 21: A Versatile Regulator of Metabolic Homeostasis. Annu Rev Nutr 38: 173–196. https://doi.org/10.1146/annurev-nutr-071816-064800
  45. Liang Q, Zhong L, Zhang J, Wang Y, Bornstein SR, Triggle CR, Ding H, Lam KS, Xu A (2014) FGF21 maintains glucose homeostasis by mediating the cross talk between liver and brain during prolonged fasting. Diabetes 63(12): 4064–4075. https://doi.org/10.2337/db14-0541
  46. Ornitz DM, Itoh N (2015) The Fibroblast Growth Factor signaling pathway. Wiley Interdiscip Rev Dev Biol 4(3): 215–266. https://doi.org/10.1002/wdev.176
  47. Potthoff MJ, Boney-Montoya J, Choi M, He T, Sunny NE, Satapati S, Suino-Powell K, Xu HE, Gerard RD, Finck BN, Burgess SC, Mangelsdorf DJ, Kliewer SA (2011) FGF15/19 regulates hepatic glucose metabolism by inhibiting the CREB-PGC-1α pathway. Cell Metab 13(6): 729–738. https://doi.org/10.1016/j.cmet.2011.03.019

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Среднесуточное потребление энергии при содержании на стандартном корме и диете кафетерия (a) и доля энергии, потребленной с каждым компонентом диеты за время эксперимента, (b) у самок мышей линии C57Bl/6J. Самки были ложно оперированы или овариэктомированы, потребляли стандартный корм, сало и печенье (диета кафетерия), получали перорально раз в три дня в 16.00 – 16.30 эстрадиол (OVX+E2) в дозе 10 мкг/животное или только растворитель (sham и OVX). Эстрадиол начинали вводить за неделю до и вводили в течение двух недель содержания на диете кафетерия. * – p < 0.05 по сравнению с ложнооперированными самками (sham), t-test.

Скачать (121KB)
3. Рис. 2. Динамика массы тела (a) и прирост массы тела (b) за время содержания на диете кафетерия у самок мышей линии C57Bl/6J. Самки были ложно оперированы или овариэктомированы, потребляли стандартный корм, сало и печенье (диета кафетерия), получали перорально один раз в три дня в 16.00 – 16.30 эстрадиол (OVX+E2) в дозе 10 мкг/животное или только растворитель (sham и OVX). Эстрадиол начинали вводить за неделю до и вводили в течение двух недель содержания на диете кафетерия. * – p < 0.05 по сравнению с ложнооперированными самками (sham), t-test.

Скачать (121KB)
4. Рис. 3. Масса тела (a), индекс массы печени (b), бурого (c), белого подкожного (d) и висцерального (e) жира у самок мышей линии C57Bl/6J. Самки были ложно оперированы или овариэктомированы, потребляли стандартный корм, сало и печенье (диета кафетерия), получали перорально один раз в три дня в 16.00 – 16.30 эстрадиол (OVX+E2) в дозе 10 мкг/животное или только растворитель (sham и OVX). Эстрадиол начинали вводить за неделю до и вводили в течение двух недель содержания на диете кафетерия. * – p < 0.05 по сравнению с ложнооперированными самками (sham), t-test.

Скачать (110KB)
5. Рис. 4. Уровни в крови лептина (a), холестерина (b), триглицеридов (c), кортикостерона (e), FGF21 (f), инсулина (g) и глюкозы (h), содержание триглицеридов (d) и гликогена (i) в печени у самок мышей линии C57Bl/6J. Самки были ложно оперированы или овариэктомированы, потребляли стандартный корм, сало и печенье (диета кафетерия), получали перорально один раз в три дня в 16.00 – 16.30 эстрадиол (OVX+E2) в дозе 10 мкг/животное или только растворитель (sham и OVX). Эстрадиол начинали вводить за неделю до и вводили в течение двух недель содержания на диете кафетерия. * – p < 0.05 по сравнению с ложнооперированными самками (sham), t-test.

Скачать (139KB)
6. Рис. 5. Уровни мРНК генов рецепторов эстрадиола (Gper, Esr1), лептина (Lepr), инсулина (Insr) (a), нейропептидов (Agrp, Crh, Pomc) (b) и корецептора бета-клото (Klb) (c) в гипоталамусе самок мышей линии C57Bl/6J. Самки были ложно оперированы или овариэктомированы, потребляли стандартный корм, сало и печенье (диета кафетерия), получали перорально один раз в три дня в 16.00 – 16.30 эстрадиол (OVX+E2) в дозе 10 мкг/животное или только растворитель (sham и OVX). Эстрадиол начинали вводить за неделю до и вводили в течение двух недель содержания на диете кафетерия. * – p < 0.05 по сравнению с ложнооперированными самками (sham), # – p < 0.05 по сравнению с овариэктомированными (OVX), t-test.

Скачать (112KB)
7. Рис. 6. Уровни мРНК генов рецепторов эстрадиола (Gper, Esr1), трансдукции сигнала инсулина (Insr, Irs2) (a), трансдукции сигнала FGF21 (Fgf21, Klb) (b), транскрипционного фактора STAT3 (Stat3), протеинфосфотирозинфосфатазы 1B (Ptpn1) и глюкоза-6-фосфатазы (G6pc) (c) в печени у самок мышей линии C57Bl/6J. Самки были ложно оперированы или овариэктомированы, потребляли стандартный корм, сало и печенье (диета кафетерия), получали перорально один раз в три дня в 16.00 – 16.30 эстрадиол (OVX+E2) в дозе 10 мкг/животное или только растворитель (sham и OVX). Эстрадиол начинали вводить за неделю до и вводили в течение двух недель содержания на диете кафетерия. * – p < 0.05 по сравнению с ложнооперированными самками (sham), t-test.

Скачать (119KB)

© Российская академия наук, 2024