Фазовый состав, текстура и остаточные напряжения в сталях с 1,6 И 2,9% Mn после закалки и холодной прокатки
- Авторы: Лукин Е.И.1, Ашмарин А.А.1, Бецофен С.Я.2, Севальнев Г.С.3, Александров А.А.1, Черненок Д.В.1
- 
							Учреждения: 
							- Институт металлургии и материаловедения им. А.А. Байкова РАН
- Московский авиационный институт (национальный исследовательский университет)
- НИЦ «Курчатовский институт» – ВИАМ
 
- Выпуск: № 1 (2025)
- Страницы: 51—58
- Раздел: Статьи
- URL: https://rjpbr.com/0869-5733/article/view/686007
- DOI: https://doi.org/10.31857/S0869573325015158
- ID: 686007
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Методами рентгеновского исследования фазового состава, текстуры и остаточных напряжений и механических испытаний на растяжение оценивали влияние состава и холодной прокатки на структуру и свойства сталей с 1,6 и 2,9% Mn. Показано, что после закалки от 1100 °С в стали с 1,6% Mn кроме α-фазы содержатся γ- и ε-фазы в количестве 4,7 и 2,5% соответственно, которые после холодной прокатки уже с обжатием 20% превращаются в α-фазу. В стали с 2,9% Mn после закалки количество γ-фазы составило 49%, но оно снижается до 20% после 20% обжатия, до 12% после 40% обжатия и до 10% после обжатий 60 и 80%. В обеих сталях с увеличением обжатия усиливаются рефлексы, соответствующие компонентам текстуры прокатки ОЦК металлов (200) и (222), а в стали с 2,9% Mn формируется однокомпонентная текстура γ-фазы типа «латуни» {110}<112>. В стали с 2,9% Mn при обжатиях 20 и 40% формируются сжимающие напряжения в результате увеличения объема при γ→α превращении. Увеличение обжатия при холодной прокатке приводит к росту пределов прочности обеих сталей, при этом уровень прочности стали с 1,6% Mn существенно выше, чем стали с 2,9% Mn. Относительное удлинение при обжатиях <40% коррелирует с количеством деформационно нетастабильной γ-фазы.
Ключевые слова
Об авторах
Е. И. Лукин
Институт металлургии и материаловедения им. А.А. Байкова РАН
														Email: s.betsofen@gmail.com
				                					                																			                												                	Россия, 							Москва						
А. А. Ашмарин
Институт металлургии и материаловедения им. А.А. Байкова РАН
														Email: s.betsofen@gmail.com
				                					                																			                												                	Россия, 							Москва						
С. Я. Бецофен
Московский авиационный институт (национальный исследовательский университет)
							Автор, ответственный за переписку.
							Email: s.betsofen@gmail.com
				                					                																			                												                	Россия, 							Москва						
Г. С. Севальнев
НИЦ «Курчатовский институт» – ВИАМ
														Email: s.betsofen@gmail.com
				                					                																			                												                	Россия, 							Москва						
А. А. Александров
Институт металлургии и материаловедения им. А.А. Байкова РАН
														Email: s.betsofen@gmail.com
				                					                																			                												                	Россия, 							Москва						
Д. В. Черненок
Институт металлургии и материаловедения им. А.А. Байкова РАН
														Email: s.betsofen@gmail.com
				                					                																			                												                	Россия, 							Москва						
Список литературы
- Z.G. Hu. Fatigue properties of transformation-induced plasticity and dual-phase steels or auto-body lightweight: Experiment, modeling and application / Z.G. Hu, P. Zhu, J. Meng // Mater. Design. 2010. V.31. P.2884–2890.
- P.G. Xu. Evaluation of austenite volume fraction in TRIP steel sheets using neutron diffraction / P.G. Xu, Y. Tomota, Y. Arakaki, S. Harjo, H. Sueyoshi // Mater. Charact. 2017. V.127. P.104–110.
- Ye Tian. Micromechanics and microstructure evolution during in situ uniaxial tensile loading of TRIP-assisted duplex stainless steels / Ye Tian, Sen Lin, J.Y. Peter Ko, Ulrich Lienert, Annika Borgenstam, Peter Hedström // Mater. Sci. Eng.: A. 2018. V.734. P.281–290.
- Farnoush, H. Hot deformation characteristics of 2205 duplex stainless steel based on the behavior of constituent phases / H. Farnoush, A. Momeni, K. Dehghani, J.A. Mohandesi, H. Keshmiri // Mater. Design. 2010. V.31. P.220–226.
- Caballero, F.G. Theoretical design and advanced microstructure in super high strength steels / F.G. Caballero, M.J. Santofimia, C. García-Mateo, J. Chao, C.G. de Andrés // Mater. Design. 2009. V.30. P.2077–2083.
- H. Luo. Effect of intercritical annealing on the Lüders strains of medium Mn transformation-induced plasticity steels / H. Luo, H. Dong, M. Huang // Mater. Design. 2015. V.83. P.42–48.
- Y. Zhao. Stress distribution correlated with damage in duplex stainless steel studied by synchrotron diffraction during plastic necking / Y. Zhao, L. le Joncour, A. Baczmański, E. Gadalińska, S. Wroński, B. Panicaud, M. François, C. Braham, T. Buslaps // Mater. Design. 2017. V.113. P.157–168.
- Pérez., E.D. Martensite reversion and texture formation in 17Mn-0.06C TRIP/TWIP steel after hot cold rolling and annealing / E.D. Pérez, S.S.F. de Dafé, S.D. Brandão // J. Mater. Res. Techn. 2015. V.4(2). P.162–170.
- Hedstroëm, P. Load partitioning and strain-induced martensite formation during tensile loading of a metastable austenitic stainless steel / P. Hedstroëm, L.E. Lindgren, J. Almer, U. Lienert, J. Bernier, R.M. Terner, M. Oden // Metal. Mater. Trans.: A. 2009. V.40. P.1039–1048.
- Ашмарин, А.А. Остаточные напряжения в поверхностных слоях с градиентной структурой / А.А. Ашмарин, С.Я. Бецофен, А.А. Лозован, М.А. Лебедев // Деформация и разрушение материалов. 2022. №2. С.18–26. – (Ashmarin A.A., Betsofen S.Y., Lozovan A.A., Lebedev M.A. «Residual stresses in surface layers with a gradient structure» // Russian Metallurgy (Metally). 2022. Is.10. P.1162–1168.)
- Банных, И.О. Исследование влияния степени деформации при испытаниях на растяжение на текстуру, фазовый состав и остаточные напряжения в α- и γ-фазах стали ВНС9-Ш / И.О. Банных, А.А. Ашмарин, С.Я. Бецофен, Е.И. Лукин, Г.С. Севальнев, Е.В. Блинов, А.А. Александров // Металлы. 2023. №4. С.50–59. – (I.O. Bannykh, A.A. Ashmarin, S.Ya. Betsofen [et al.]. «Effect of Tensile Deformation on the Texture, Phase Composition, and Residual Stresses of the α and γ Phases in VNS9-Sh Steel» // Russian Metallurgy (Metally). 2023. Is.7. P.905–913. doi: 10.1134/s0036029523070029.)
- Бецофен, С.Я. Влияние холодной прокатки на фазовый состав, текстуру и остаточные напряжения в сталях с 15,9 и 17,7% Mn / С.Я. Бецофен, Е.И. Лукин, А.А. Ашмарин, И.О. Банных, В.М. Блинов, Г.С. Севальнев, А.А. Александров, Д.В. Черненок // Деформация и разрушение материалов. 2024. №10. С.26–34. – (S.Ya. Betsofen, Ye.I. Lukin, A.A. Ashmarin, I.O. Bannykh, V.M. Blinov, G.S. Seval’nev, A.A. Aleksandrov, D.V. Chernenok. «Vliyaniye kholodnoy prokatki na fazovyy sostav, teksturu i ostatochnyye napryazheniya v stalyakh s 15,9 i 17,7% Mn» // Deformatsiya i razrusheniye materialov. 2024. №10. S.26–34.)
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 

