ON ESTIMATING THE TIME SHIFT OF A RANDOM PERIODIC OFDM SIGNAL

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

We consider the problem of estimating the time shift of an unknown, random, wideband OFDM signal with N subcarriers and periodic synchronization insertions. The signal is assumed to be observed against a background of white Gaussian noise, and a small amount of received data is used to construct the estimate. Such problems arise in geolocation using low-orbit satellite constellations. To estimate the maximum posterior probability (MPP) of the time shift, we find its limiting distribution as N → ∞ and investigate its large deviations using the method of fractional derivatives.

About the authors

G. K Golubev

Kharkevich Institute for Information Transmission Problems of the Russian Academy of Sciences

Email: golubev.yuri@gmail.com
Moscow

V. G Potapov

Kharkevich Institute for Information Transmission Problems of the Russian Academy of Sciences

Email: potapov@iitp.ru
Moscow

References

  1. Reid T.G.R., Neish A.M., Walter T., Enge P.K. Broadband LEO Constellations for Navigation // Navigation. 2018. V. 65. № 2. P. 205–220. https://doi.org/10.1002/navi.234
  2. Psiaki M.L. Navigation Using Carrier Doppler Shift from a LEO Constellation: TRANSIT on Steroids // Navigation. 2021. V. 68. № 3. P. 621–641. https://doi.org/10.1002/navi.438
  3. Humphreys T.E., Iannucci P.A., Komodromos Z.M., Graff A.M. Signal Structure of the Starlink Ku-Band Downlink // IEEE Trans. Aerosp. Electron. Syst. 2023. V. 59. № 5. P. 6016–6030. https://doi.org/10.1109/TAES.2023.3268610
  4. Kozhaya S.E., Kassas Z.M. Positioning with Starlink LEO Satellites: A Blind Doppler Spectral Approach // Proc. 2023 IEEE 97th Vehicular Technology Conf. (VTC2023-Spring). Florence, Italy. June 20–23, 2023. P. 1–5. https://doi.org/10.1109/VTC2023-Spring57618.2023.10199264
  5. Ибрагимов И.А., Хасьминский Р.З. Асимптотическая теория оценивания. М.: Наука, 1979.
  6. Le Cam L., Yang G.L. Asymptotics in Statistics: Some Basic Concepts. New-York: Springer, 2000.
  7. Kutoyants Y.A. Introduction to the Statistics of Poisson Processes and Applications. Cham: Springer, 2013. https://doi.org/10.1007/978-3-031-37054-0
  8. Khalife J., Neinavaie M., Kassas Z.M. The First Carrier Phase Tracking and Positioning Results with Starlink LEO Satellite Signals // IEEE Trans. Aerosp. Electron. Syst. 2022. V. 56. № 2. P. 1487–1491. https://doi.org/10.1109/TAES.2021.3113880
  9. Rubin H., Song K.-S. Exact Computation of the Asymptotic Effciency of Maximum Likelihood Estimators of a Discontinuous Signal in a Gaussian White Noise // Ann. Statist. 1995. V. 23. № 3. P. 732–739. https://doi.org/10.1214/aos/1176324618
  10. Гихман И.И., Скороход А.В. Введение в теорию случайных процессов. М.: Наука, 1965.
  11. Donsker M.D. An Invariance Principle for Certain Probability Limit Theorems // Four Papers on Probability. Mem. Amer. Math. Soc. V. 6. Providence, RI: Amer. Math. Soc., 1951. P. 50–61.
  12. Miller K.S., Ross B. An Introduction to the Fractional Calculus and Fractional Differential Equations. New York: Wiley, 1993.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences