Relaxation of multiple-quantum coherences in dipolar coupled 1H spin pairs in gypsum
- 作者: Fel’dman Е.B.1, Kuznetsova E.I.1, Fedorova A.V.1, Panicheva K.V.1,2, Vasil’ev S.G.1, Zenchuk A.I.1
-
隶属关系:
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of Russian Academy of Sciences
- Lomonosov Moscow State University
- 期: 卷 88, 编号 7 (2024)
- 页面: 1089-1098
- 栏目: Spin physics, spin chemistry and spin technologies
- URL: https://rjpbr.com/0367-6765/article/view/676746
- DOI: https://doi.org/10.31857/S0367676524070147
- EDN: https://elibrary.ru/PAVTXY
- ID: 676746
如何引用文章
详细
The evolution and relaxation of MQ NMR coherences on the preparation period were investigated experimentally on a single crystal of gypsum, CaSO4·2H2O. The theory describing the dynamics of MQ coherences on the preparation period of MQ experiment for a pair of spins was developed based on the Lindblad master equation. This theory predicts the appearance of MQ coherences of only zeroth and second orders, oscillatory exchange of their intensities and exponential decay with increasing of the preparation time. The proposed theory describes the experimental data well. It is shown that the frequency of oscillations depends on the orientation of the crystal in the external magnetic field and determined by the dipolar coupling between protons of the water molecules contained in the gypsum crystal. The relaxation time of MQ coherences of zeroth and second orders, Tr= 150±15 μs, were independent of the crystal orientation, which suggest a common source of relaxation due to the dipole-dipole interactions with protons surrounding water molecule.
全文:

作者简介
Е. Fel’dman
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of Russian Academy of Sciences
Email: svasilev@icp.ac.ru
俄罗斯联邦, Chernogolovka
E. Kuznetsova
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of Russian Academy of Sciences
Email: svasilev@icp.ac.ru
俄罗斯联邦, Chernogolovka
A. Fedorova
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of Russian Academy of Sciences
Email: svasilev@icp.ac.ru
俄罗斯联邦, Chernogolovka
K. Panicheva
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of Russian Academy of Sciences; Lomonosov Moscow State University
Email: svasilev@icp.ac.ru
俄罗斯联邦, Chernogolovka; Moscow
S. Vasil’ev
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of Russian Academy of Sciences
编辑信件的主要联系方式.
Email: svasilev@icp.ac.ru
俄罗斯联邦, Chernogolovka
A. Zenchuk
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of Russian Academy of Sciences
Email: svasilev@icp.ac.ru
俄罗斯联邦, Chernogolovka
参考
- Baum J., Munowitz M., Garroway A.N., Pines A. // J. Chem. Phys. 1985. V. 83. No. 5. P. 2015.
- Lovric M., Krojanski H.G., Suter D. // Phys. Rev. A. 2007. V. 75. Art. No. 42305.
- Fel’dman E.B., Pechen A.N., Zenchuk A.I. // Phys. Lett. A. 2007. V. 413. Art. No. 127605.
- Doronin S.I., Fel’dman E.B., Lazarev I.D. // Phys. Rev. A. 2019. V. 100. Art. No. 022330.
- Domínguez F.D., Álvarez G.A. // Phys. Rev. A. 2021. V. 104. Art. No. 062406.
- Зобов В.Е., Лундин А.А. // ЖЭТФ. 2022. Т. 162. № 5. C. 778; Zobov V.E., Lundin A.A. // JETP. 2022. V. 135. P. 752.
- Gärttner M., Bohnet J., Safavi-Naini A. et al. // Nature Phys. 2017. V. 13. P. 781.
- Gleason K.K. // Concepts Magn. Reson. 1993. V. 5. P. 199.
- Vasil’ev S.G., Volkov V.I., Tatarinova E.A. et al. // J. Non-Cryst. Solids. 2018. V. 489. P. 6.
- Krojanski H.G., Suter D. // Phys. Rev. A. 2006. V. 74. Art. No. 062319.
- Saalwächter K., Ziegler P., Spyckerelle O. et al. // J. Chem. Phys. 2003. V. 119. P. 346.
- Preskill J. Lecture note for physics 229: Quantum information and computation. Pasadena: California Institute of Technology, 1998. 321 p.
- Manzano D. // AIP Advances. 2020. V. 10. Art. No. 025106.
- Bengs C., Levitt M.H. // J. Magn. Reson. 2020. V. 310. Art. No. 106645.
- Bengs C. // J. Magn. Reson. 2021. V. 322. Art. No. 106868.
- Rodin B.A., Abergel D. // Magn. Reson. 2022. V. 3. P. 27.
- Низовцев А.П., Килин С.Я. // Изв. РАН. Сер. физ. 2020. T. 84. № 3. C. 310; Nizovtsev A.P., Kilin S.Y. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. P. 235.
- Леонтьев А.В., Жарков Д.К., Шмелев А.Г. и др. // Изв. РАН. Сер. физ. 2022. T. 86. № 12. С. 1724; Leontyev A.V., Zharkov D.K., Shmelev A.G. et al. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. P. 1467.
- Андрианов С.Н., Калачев А.А., Шиндяев О.П., Шкаликов А.В. // Изв. РАН. Сер. физ. 2020. T. 84. № 3. С. 392; Andrianov S.N., Kalachev A.A., Shindyaev O.P., Shkalikov A.V. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. P. 299.
- Харламова Ю.А., Арсланов Н.М., Моисеев С.А. // Изв. РАН. Сер. физ. 2022. T. 86. № 12. С. 1770; Kharlamova Y.A., Arslanov N.M., Moiseev S.A. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. P. 1507.
- Pake G.E. // J. Chem. Phys. 1948. V. 16. P. 327.
- McKnett C.L., Dybowski C.R., Vaughan R.W. // J. Chem. Phys. 1975. V. 63. P. 4578.
- Doronin S.I., Maksimov I.I., Fel’dman E.B. // J. Exp. Theor. Phys. 2000. V. 91. P. 597.
- Casagrande H.P. The density matrix renormalization group applied to open quantum systems. Dissertation for degree of Master of Science. São Paulo: The Physics Institute of the University São Paulo, 2019. 72 p.
- Goldman M. Spin temperature and nuclear magnetic resonance in solids. Oxford: Clarendon Press, 1970. 258 p.
- Fano U. // Rev. Mod. Phys. 1957. V. 29. P. 74.
- Nielsen M., Chuang I. Quantum computation and quantum information. Cambridge: Cambridge University Press, 2010. 676 p.
- Fel’dman E.B., Pyrkov A.N. // JETP Lett. 2008. V. 88. P. 398.
- Bochkin G.A., Fel’dman E.B., Lazarev I.D. et al.// J. Magn. Reson. 2019. V. 301. P. 10.
- Bochkin G.A., Fel’dman E.B., Kuznetsova E.I. et al. // J. Magn. Reson. 2020. V. 319. Art. No. 106816.
- Bochkin G.A., Fel’dman E.B., Kiryukhin D.P. et al. // J. Magn. Reson. 2023. V. 350. P. 107415.
补充文件
