W-band phase shifter based on metasurface with built-in pin diodes

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We propose a design and show the numerical simulation results for a W-band (75–110 GHz) phase shifter. The structure of the phase shifter consists of periodic array of rectangular patch antennas on a dielectric substrate with built-in pin-diodes. The calculations demonstrate the possibility of achieving a phase shift of the transmitted wave up to 87° at a frequency of 96 GHz with transmittance losses of –7 dB.

全文:

受限制的访问

作者简介

A. Kazakov

Moscow Institute of Physics and Technology; Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: askazakov@physics.msu.ru
俄罗斯联邦, Dolgoprudny; Moscow

P. Gusikhin

Osipyan Institute of Solid-State Physics of the Russian Academy of Sciences

Email: askazakov@physics.msu.ru
俄罗斯联邦, Chernogolovka

I. Andreev

Osipyan Institute of Solid-State Physics of the Russian Academy of Sciences

Email: askazakov@physics.msu.ru
俄罗斯联邦, Chernogolovka

V. Muravyov

Osipyan Institute of Solid-State Physics of the Russian Academy of Sciences

Email: askazakov@physics.msu.ru
俄罗斯联邦, Chernogolovka

I. Kukushkin

Osipyan Institute of Solid-State Physics of the Russian Academy of Sciences

Email: askazakov@physics.msu.ru
俄罗斯联邦, Chernogolovka

参考

  1. Dang S., Amin O., Shihada B. et al. // Nature Electron. 2020. V. 3. No. 1. P. 20.
  2. Rasilainen K., Phan T.D., Berg M. et al. // IEEE J. Sel. Areas Commun. 2020. V. 41. No. 8. P. 2530.
  3. Fu X., Yang F., Liu C. et al. // Adv. Opt. Mater. 2019. V. 8. No. 3. Art. No. 1900628.
  4. Guo Y., Guo Y., Li C. et al. // Appl. Sciences. 2021. V. 11. No. 9. P. 4017.
  5. Rice M. Digital communications: a discrete-time approach. Pearson Prentice Hall, 2009. 796 с.
  6. Веселаго В.Г. // УФН. 1967. Т. 92. № 7. С. 517.
  7. Smith D.R., Pendry J.B., Wiltshire M.C.K. // Science. 2004. V. 305. No. 5685. P. 788.
  8. Shalaev V.M. // Nature Photon. 2007. V. 1. No. 1. P. 41.
  9. Кильдишев А.В., Шалаев В.М. // УФН. 2011. T. 181. № 1. С. 59; Kildishev A.V., Shalaev V.M. // Phys. UsP. 2011. V. 54. No. 1. P. 53.
  10. Holloway C.L., Kuester E.F., Gordon J.A. et al. // IEEE Antennas Propag. Mag. 2012. V. 54. No. 2. P. 10.
  11. Yu N., Capasso F. // Nature Mater. 2014. V. 13. No. 2. P. 139.
  12. Yu Y.F., Zhu A.Y., Paniagua‐Domínguez R. et al. // Laser Photon. Rev. 2015. V. 9. No. 4. P. 412.
  13. Chen H.T., Taylor A.J., Yu N. // Rep. Prog. Phys. 2016. V. 79. No. 7. Art. No. 076401.
  14. Ремнев М.А., Климов В.В. // УФН. 2018. Т. 188. № 2. С. 169; Remnev M.A., Klimov V.V. // Phys. Usp. 2018. V. 61. No. 2. P. 157.
  15. Yu N., Genevet P., Kats M.A. et al. // Science. 2011. V. 334. No. 6054. P. 333.
  16. Pfeiffer C., Grbic A. // Phys. Rev. Lett. 2013. V. 110. No. 19. Art. No. 197401.
  17. Decker M., Staude I., Falkner M. et al. // Adv. Opt. Mater. 2015. V. 3. No. 6. P. 813.
  18. Chen M., Kim M., Wong A.M. et al. // Nanophotonics. 2018. V. 7. No. 6. P. 1207.
  19. Yu N., Aieta F., Genevet P. et al. // Nano Lett. 2012. V. 12. No. 12. P. 6328.
  20. Sun S., Yang K.Y., Wang C.M. et al. // Nano Lett. 2012. V. 12. No. 12. P. 6223.
  21. Pors A., Albrektsen O., Radko I.P. et al. // Sci. Reports. 2013. V. 3. No. 1. P. 2155.
  22. Huang L., Chen X., Muhlenbernd H. // Nano Lett. 2012. V. 12. No. 11. P. 5750.
  23. Sun S., He Q., Hao J. et al. // Adv. Opt. Photon. 2019. V. 11. No. 2. P. 380.
  24. Yang F., Pitchappa P., Wang N. // Micromachines. 2022. V. 13. No. 2. P. 285.
  25. Zeng H., Gong S., Wang L. // Nanophotonics. 2021. V. 11. No. 3. P. 415.
  26. Sievenpiper D.F., Schaffner J.H., Song H.J. et al. // IEEE Antennas Propag. Mag. 2003. V. 51. No. 10. P. 2713.
  27. Parlak M., Buckwalter J.F. // IEEE Microw. Wirel. Compon. Lett. 2010. V. 20. No. 11. P. 631.
  28. Zhang Y., Zhao Y., Liang S. et al. // Nanophotonics. 2018. V. 8. No. 1. P. 153.
  29. Zhang Y., Qiao S., Liang S. et al. // Nano Lett. 2015. V. 15. No. 5. P. 3501.
  30. Cui T.J., Qi M.Q., Wan X. et al. // Light Sci. Appl. 2014. V. 3. No. 10. P. 218.
  31. Pan X., Yang F., Xu S., Li M. // Proc. IEEE Ap-S/URSI (San Diego, 2017). P. 2055.
  32. Pan X., Wang S., Li G. et al. // Proc. IEEE MTT-S IWS (Chengdu, 2018). P. 1.
  33. Chieh J.C.S., Rowland J., Sharma S. // Electron. Lett. 2018. V. 54. No. 17. P. 1040.
  34. Chaimool S., Hongnara T., Rakluea C. et al. // Int. J. Antennas Propag. 2019. V. 2019. Art. No. 7216324.
  35. Zhang Z., Lan F., Mazumder P. et al. // Proc. IEEE PIERS-Fall (Rome, 2019). P. 3232.
  36. Al-Tag A.A., Al-mahdi R.M., Al-hedari et al. // Proc. eSmarTA2022 (Ibb, 2022). P. 1.
  37. Montori S., Chiuppesi E., Farinelli P. et al. // Int. J. Microw. Wirel. Technol. 2011. V. 3. No. 5. P. 521.
  38. Perez-Palomino G., Barba M., Encinar J.A. et al. // IEEE Antennas Propag. Mag. 2015. V. 63. No. 8. P. 3722.
  39. Gaebler A., Moessinger A., Goelden F. et al. // Int. J. Antennas Propag. 2009. V. 2009. Art. No. 876989.
  40. Levin B.J., Weidner G.G. // Proc. IEEE G-MTT Int. Microw. Symp. (Boulder, 1973). P. 65.
  41. Nguyen C., Yen P. // Proc. IEEE16th EuMC1986. (Dublin, 1986). P. 133.
  42. Stephan K.D., Goldsmith P.F. // Proc. IEEE MTT-S Microw. Symp. Digest (Albuquerque, 1992). P. 591.
  43. Lowe K., Lynch D.D., Panaretos S. et al. Diode patch phase shifter insertable into a waveguide. US Patent No. 5170140. 1992.
  44. Dzhikirba K.R., Shuvaev A., Khudaiberdiev D. et al. // Appl. Phys. Lett. 2023. V. 123. No. 5. Art. No. 052104.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Schematic representation of the general structure of the phase-shifting element, which is a lattice array of 20 metal patch antennas separated by slits with characteristic size g = 30 μm (a); scheme of pin-diodes inclusion in the structure in the region of the slot between neighbouring metal patches (b)

下载 (279KB)
3. Fig. 2. Dependences of the real (a) and imaginary (b) parts of the effective impedance of the phase-shifting element on frequency for different pin-diode differential resistances

下载 (165KB)
4. Fig. 3. Dependences of the phase element transmission coefficient (a) and phase shift of the passed electromagnetic wave (b) on frequency at different pin-diode resistances

下载 (181KB)
5. Fig. 4. Dependence of the phase shift of the passed electromagnetic wave at 96 GHz on the differential resistance of pin-diodes

下载 (107KB)

版权所有 © Russian Academy of Sciences, 2024