Formation and dynamics of droplets in a magnetic fluid in microchannels in an inhomogeneous magnetic field of ring magnet

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We studied the dynamics of non-magnetic droplets in magnetic liquids in microchannels with a “flow focusing” configuration under the action of an inhomogeneous magnetic field of an annular magnet. Two types of multiphase systems were studied: non-magnetic emulsions “oil in water”, “water in oil”, as well as “water in oil in water” and magnetic direct emulsions in which the magnetic liquid was used as a continuous phase. The dependences of the sizes of the generated non-magnetic inclusions on the flow rate of the continuous magnetic phase and the displacement of the magnetic field source relative to the dispersed phase supply connector horizontally along the channel axis are obtained.

Texto integral

Acesso é fechado

Sobre autores

D. Kalyuzhnaya

Southwest State University

Email: r-piter@yandex.ru
Rússia, Kursk

E. Sokolov

Southwest State University

Email: r-piter@yandex.ru
Rússia, Kursk

G. Zhukov

Southwest State University

Email: r-piter@yandex.ru
Rússia, Kursk

P. Ryapolov

Southwest State University

Autor responsável pela correspondência
Email: r-piter@yandex.ru
Rússia, Kursk

Bibliografia

  1. Han W., Chen X. // J. Brazil. Soc. Mech. Sci. Eng. 2021. V. 43. No. 5. P. 247.
  2. Ren K., Zhou J., Wu H. // Acc. Chem. Res. 2013. V. 46. No. 11. P. 2396.
  3. Bremond N., Bibette J. // Soft Matter. 2012. V. 8. No. 41. P. 10549.
  4. Seemann R. Brinkmann M., Pfohl T. et al. // Rep. Progr. Phys. 2011. V. 75. No. 1. Art. No. 016601.
  5. Baret J.C. // Lab on a Chip. 2012. V. 12. No. 3. P. 422.
  6. Shui L., Eijkel J.C.T., Van den Berg A. // Adv. Coll. Interface Sci. 2007. V. 133. No. 1. P. 35.
  7. Nakashima T., Shimizu M., Kukizaki M. // Adv. Drug Deliv. Rev. 2000. V. 45. No. 1. P. 47.
  8. Mason T.G., Bibette J. // Langmuir. 1997. V. 13. No. 17. P. 4600.
  9. Zhao Z., Wang Z., Li G. et al. // Adv. Funct. Mater. 2021. V. 31. No. 31. Art. No. 2103339.
  10. Zhang Y., Nguyen N.T. // Lab on a Chip. 2017. V. 17. No. 6. P. 994.
  11. Розенцвейг Р.Е. Феррогидродинамика. М.: Мир. 1989. 240 c.
  12. Liang D., Ma P., Zhu C. et al. // IEC Res. 2019. V. 58. No. 41. P. 19226.
  13. Dunne P., Adachi T., Dev A.A. et al. // Nature. 2020. V. 581. No. 7806. P. 58.
  14. Toussaint R., Akselvoll J., Helgesen G. et al. // Phys. Rev. 2004. V. 69. Art. No. 011407.
  15. De Gans B., Duin N., Van den Ende D. et al. // J. Chem. Phys. 2000. V. 113. P. 2032.
  16. Bashtovoi V., Kovalev M., Reks A. // J. Magn. Magn. Mater. 2005. V. 289. P. 350.
  17. Диканский Ю.И., Закинян А.Р. // ЖТФ. 2010. Т. 80. № 8. С. 8; Dikansky Yu.I., Zakinyan A.R. // Tech. Phys. 2010. V. 55. No. 8. P. 1082.
  18. Katsikis G., Breant A., Rinberg A. et al. // Soft Matter. 2018. V. 14. No. 5. P. 681.
  19. Banerjee U., Mandal C., Jain S.K. // Proc. 46th National Conf. FMFP (Coimbatore, 2019). P. 1.
  20. Huang X., Saadat M., Bijarchi M.A. et al. // Chem. Eng. Sci. 2023. V. 270. Art. No. 118519.
  21. Соколов Е.А., Калюжная Д.А., Васильева А.О., и др. // Изв. ЮЗГУ Сер. тех. и технол. 2022. Т. 12. № 1. С. 118.
  22. Kalyuzhnaya D., Sokolov E., Vasilyeva A. et al. // Fluids. 2023. V. 8. No. 2. Art. No. 42.
  23. Ряполов П.А., Соколов Е.А., Шельдешова Е.В. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 3. С. 343; Ryapolov P.A., Sokolov E.A., Shel’deshova E.V. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 3. P. 295.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Experimental setup: external appearance (a); block diagram (b): 1 — microfluidic device, 2 — ring permanent magnet, 3,4 — syringe pump, 5 — digital microscope, 6 — illuminator, 7 — computer, 8 — mechatronic drive.

Baixar (189KB)
3. Fig. 2. Configuration of microfluidic devices: chip for single emulsions (a): 1 — connector for feeding the continuous phase, 2 — connector for feeding the dispersed phase, 3 — output connector; chip for double emulsions (b): 1 — connector for feeding the external phase. The region of magnetic levitation at the zero position of the ring magnet is highlighted in green, 2 — connector for feeding the middle phase, 3 — connector for feeding the internal phase, 4 — output connector.

Baixar (51KB)
4. Fig. 3. Spatial distribution of isolines of the modulus of the inhomogeneous magnetic field in the Cartesian coordinate system, the center of which is the center of symmetry of the magnet: for Magnet 1 (a); for Magnet 2 (b).

Baixar (402KB)
5. Fig. 4. Emulsions in microchannels: single direct emulsion (a); single inverse emulsion (b); double emulsion “water/oil/water” [22] (c).

Baixar (164KB)
6. Fig. 5. Dynamics of mineral oil droplets in a sample of magnetic fluid МЖ-1 at different feed rates of the continuous phase q1 under the action of the magnetic field of the ring Magnet1, located in the zero position relative to the connector for feeding the dispersed phase into the microchannel.

Baixar (143KB)
7. Fig. 6. Dependences of the volume of oil droplets in a microfluidic chip: on the flow rate of magnetic fluid МЖ-1 (a); on the movement of magnets (b).

Baixar (54KB)
8. Fig. 7. Dependence of the volume of mineral oil drops on the movement of magnets for a sample of magnetic fluid МЖ-2.

Baixar (24KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024