Влияние продолжительного отжига на морфологию и оптические свойства пленок ZnO, полученных магнетронным напылением
- Авторы: Томаев В.В.1,2, Полищук В.А.3, Леонов Н.Б.4, Вартанян Т.А.4
-
Учреждения:
- Федеральное государственное бюджетное образовательное учреждение высшего образования “Санкт-Петербургский государственный технологический институт (технический университет)”,
- Федеральное государственное бюджетное образовательное учреждение высшего образования “Санкт-Петербургский горный университет”
- Федеральное государственное бюджетное образовательное учреждение высшего образования “Государственный университет морского и речного флота имени адмирала С.О. Макарова”
- Федеральное государственное автономное образовательное учреждение высшего образования “Национальный исследовательский университет ИТМО”
- Выпуск: Том 87, № 10 (2023)
- Страницы: 1446-1451
- Раздел: Статьи
- URL: https://rjpbr.com/0367-6765/article/view/654586
- DOI: https://doi.org/10.31857/S0367676523702526
- EDN: https://elibrary.ru/KIRFEB
- ID: 654586
Цитировать
Аннотация
Изучено влияние времени отжига на структурные и оптические свойства пленок ZnO, которые сформированы из пленок Zn, полученных методом магнетронного напыления с последующим окислением в атмосфере воздуха. Термическое окисление происходило в атмосфере воздуха в течение 7 и 24 ч соответственно, в программируемой муфельной печи при T = 750°C. Обнаружено изменение структуры поверхности пленок в зависимости от времени отжига пленки Zn и материала подложки, которое проявляется в оптических свойствах пленок.
Об авторах
В. В. Томаев
Федеральное государственное бюджетное образовательное учреждение высшего образования“Санкт-Петербургский государственный технологический институт (технический университет)”,; Федеральное государственное бюджетное образовательное учреждение высшего образования
“Санкт-Петербургский горный университет”
Автор, ответственный за переписку.
Email: tvaza@mail.ru
Россия, Санкт-Петербург; Россия, Санкт-Петербург
В. А. Полищук
Федеральное государственное бюджетное образовательное учреждение высшего образования“Государственный университет морского и речного флота имени адмирала С.О. Макарова”
Email: tvaza@mail.ru
Россия, Санкт-Петербург
Н. Б. Леонов
Федеральное государственное автономное образовательное учреждение высшего образования“Национальный исследовательский университет ИТМО”
Email: tvaza@mail.ru
Россия, Санкт-Петербург
Т. А. Вартанян
Федеральное государственное автономное образовательное учреждение высшего образования“Национальный исследовательский университет ИТМО”
Email: tvaza@mail.ru
Россия, Санкт-Петербург
Список литературы
- Özgür Ü., Alivov Ya. I., Liu C. et al. // J. Appl. Phys. 2005. V. 98. P. 041301.
- Morkoç H., Özgür Ü. Zinc oxide: fundamentals, materials and device technology. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, 2009. 490 p.
- Singh A., Vishwakarma H.L. // IOSR-JAP. 2014. V. 6. No. 2. Ver. II. P. 28.
- Özgür Ü., Hofstetter D., Morkoç H. // Proc. IEEE. 2010. V. 98. No. 7. P. 1255.
- Rashmi R.K., Deepak .P, Saurabh K.P. // Res. Develop. Mater. Sci. V. 3. No. 3. P. 265.
- Ellmer K., Klein A., Rech B. Transparent conductive zinc oxide. Springer series in materials science 104. Berlin Heidelberg: Springer-Verlag, 2008. 32 p.
- Parihar V., Raja M., Paulose R. // Rev. Adv. Mater. Sci. 2018. V. 53. P. 119.
- Janotti A., Van de Walle C.G. // Rep. Prog. Phys. 2009. V. 72. P. 126501.
- Kulkarni S.S., Shirsat M.D. // IJARPS. 2015. V. 2. No. 1. P. 14.
- Nenavathu B.P., Sharma A., Dutta R.K. // J. Water Environ. Nanotechnol. 2018. V. 3(4). P. 289.
- Pranav Y.D., Kartik H.P., Kamlesh V.C. et al. // Proc. Technology. 2016. V. 23. P. 328.
- Damiani L.R., Mansano R.D. // J. Phys. Conf. Ser. 2012. V. 370. Art. No. 012019.
- Kuz'mina A.S., Kuz’mina M.Yu., Kuz’min M.P. // Mater. Sci. Forum Subm. 2019. V. 989. No. 10. P. 210.
- Balela M.D.L., Pelicano C.M.O., Ty J.D., Yanagi H. // Opt. Quant. Electron. 2017. V. 49. No. 3. 11 p.
- Hasnidawani J.N., Azlina H.N., Norita H. et al. // Proc. Chemistry. 2016. V. 19. P. 211.
- Abdullach K.A., Awad S., Zaraket J., Salame C. // Energy Proc. 2017. V. 119. P. 565.
- Fouad O.A., Ismail A.A., Zaki Z.I., Mohamed R.M. // Appl. Catalysis B. 2006. V. 62. P. 144.
- Hassan N.K., Hashim M.R. // Sains Malaysiana. 2013. V. 42. No. 2. P. 193.
- Dikovska A.Og., Atanasov P.A., Vasilev C. et al. // J. Optoelectron. Adv. Mater. 2005. V. 7. No. 3. P. 1329.
- Vincze A., Bruncko J., Michalka M., Figura D. // Central Europ. J. Phys. 2007. V. 5. No. 3. P. 385.
- John A., Ko H.-U., Kim D.-G., Kim J. // Cellulose. 2011. V. 18. P. 675.
- Habibi R., Daryan J.T., Rashidi A.M. // J. Exper. Nanosci. 2009. V. 4. No. 1. P. 35.
- Feng T.-H., Xia X.-C. // Opt. Mater. Express. 2016. V. 6. Art. No. 3735.
- Kelly P.J., Arnell R.D. // Vacuum. 2000. V. 56. P. 159.
- Rahman F. // Opt. Engin. 2019. V. 58(1). P. 010901.
- Guan N., Dai X., Babichev A.V. et al. // Chem. Sci. 2017. V. 8. P. 7904.
- Park G.C., Hwang S.M., Lee S.M. et al. // Sci. Reports. 2015. V. 5. P. 10410.
- Macaluso R., Lullo G., Crupi I. et al. // Electronics. 2020. V. 9. P. 991.
- Baratto C., Kumar R., Comini E. et al. // Opt. Express. 2015. V. 23. No. 15. P. 18937.
- Rauwel P., Salumaa M., Aasna A. et al. // J. Nanomaterials. 2016. V. 2016. Art. No. 5320625.
- Rodnyi P., Chernenko K., Klimova O. et al. // Radiat. Measurements. 2016. V. 90. P. 136.
- Rodnyi P.A., Chernenko K.A., Venevtsev I.D. // Opt. Spectrosc. 2018. V. 125. No. 3. P. 372.
- Janotti A., Van de Walle C.G. // Rep. Progr. Phys. 2009. V. 72. P. 126501.
- Zhang M., Averseng F., Krafft J.-M. et al. // J. Phys. Chem. C. 2020. V. 124. No. 23. P. 12696.
- Guo H.-L., Zhu Q., Wu X.-L. et al. // Nanoscale. 2015. V. 7. P. 7216.
- Chen L., Zhai B., Huang Y.M. // Catalysts. 2020. V. 10. P. 1163.
- Wang J., Xiang L., Komarneni S. // Ceram. Internat. 2018. V. 44. No. 7. P. 7357.
- Kröger F.A. The chemistry of imperfect crystals. Amsterdam: North-Holland Publ. Cj., 1964.
- Hauffe K., Reactionen in und an FestenStoffen, Berlin: Springer, 1955.
- Moore W.L., Williams E.L. // Discuss. Faraday Soc. 1959. V. 28. P. 86.
- Leonov N.B., Komissarov M.D., Parfenov P.S. et al. // Appl. Phys. A. 2022. V. 128. P. 665.
- Tomaev V.V., Polischuk V.A., Vartanyan T.A. et al. // Opt. Spectrosc. 2021. V. 129. No. 9. P. 1033.
Дополнительные файлы
