Differential gain of THz radiation in crystalline quartz plate in the field of pump wave

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The possibility to exploit nonlinear Fabry–Perot interferometers to differential gain of terahertz radiation in the field of a pump wave of the same frequency was theoretically considered. It is shown that in mirrorless nonlinear Fabry–Perot interferometer consisted of crystalline quartz plate, which reflection is determined by Fresnel reflection only, the regime of maximal differential gain of radiation with central frequency at 1 THz can be observed at thickness of working medium near 1 mm and at radiation intensity with order of magnitude at 108 W⋅cm−2.

Sobre autores

I. Kazakov

ITMO University

Email: ikazzzakov@yandex.ru
St. Petersburg, Russia

M. Guselnikov

ITMO University

St. Petersburg, Russia

S. Kozlov

ITMO University

St. Petersburg, Russia

Bibliografia

  1. Луговой В.Н. // Квант. электрон. 1979. Т. 6. № 10. С. 2053
  2. Lugovoi V.N. // Sov. J. Quantum Electron. 1979. V. 9. No. 10. P. 1207.
  3. Gibbs H. Optical bistability: controlling light with light. Elsevier, 2012. 471 p.
  4. Ахманов С.А., Выслоух В.А., Чиркин А.С. Оптика фемтосекундных лазерных импульсов. М: Наука, 1988. 310 с.
  5. Miller D.A.B. // Nature Photon. 2010. No. 4. P. 3.
  6. Tcypkin A.N., Melnik M.V., Zhukova M.O. et al. // Opt. Express. 2019. V. 27. No. 8. P. 10419.
  7. Francis K.J.G., Chong M.L.P., E Y., Zhang X.C. // Opt. Express. 2020. V. 45. No. 20. P. 5628.
  8. Novelli F., Ma C.-Y., Adhlakha N. et al. // Appl. Sci. 2020. V. 10. No. 15. P. 5290.
  9. Zhukova M.O., Melnik M.V., Vorontsova I.O. et al. // Photonics. 2020. V. 7. No. 4. P. 98.
  10. Tcypkin A.N., Zhukova M.O., Melnik M.V. et al. // Phys. Rev. Appl. 2021. V. 15. No. 5. Art. No. 054009.
  11. Artser I.R., Melnik M.V., Ismagilov A.O. et al. // Sci. Reports. 2022. V. 12. No. 1. Art. No. 9019.
  12. Wu Q., Huang Y., Lu. Y. et al. // Light: Sci. Appl. 2023.
  13. Zibod S., Rasekh P., Yildrim M. et al. // Adv. Opt. Mater. 2023. V. 11. No. 15. Art. No. 2202343.
  14. Nabilkova A.O., Ismagilov A.O., Melnik M.V. et al. // Opt. Letters. 2023. V. 48. No. 5. P. 1312.
  15. Гусельников М.С., Жукова М.О., Козлов С.А. // Опт. журн. 2022. Т. 89. № 7. С. 3
  16. Guselnikov M.S., Zhukova M.O., Kozlov S.A. // J. Opt. Technol. 2022. V. 89. No. 7. P. 371.
  17. Гусельников М.С., Жукова М.О., Козлов С.А. // Опт. и спектроск. 2023. Т. 131. № 2. С. 287.
  18. Miller D.A.B., Smith S.D., Johnston A. // Appl. Phys. Lett. 1979. V. 35. No. 9. P. 658.
  19. Власов С.Н., Таланов В.И. Самофокусировка волн. Нижний Новгород: ИПФ РАН, 1997. 217 с.
  20. Boyd R.W. Nonlinear optics. Elsevier, 2008. 640 p.
  21. Weber M., Milam D., Smith W. // Opt. Engin. 1978. V. 17. No. 5. P. 463.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025