Investigation of the viscosity of magnetic-liquid systems using the developed capillary viscometer
- Autores: Churaev A.A.1, Shel’deshova E.V.1, Bondar’ E.V.1, Ryapolov P.A.1
- 
							Afiliações: 
							- Southwest State University
 
- Edição: Volume 88, Nº 11 (2024)
- Páginas: 1822–1829
- Seção: Physics of Magnetism
- URL: https://rjpbr.com/0367-6765/article/view/682576
- DOI: https://doi.org/10.31857/S0367676524110269
- EDN: https://elibrary.ru/FIZUIW
- ID: 682576
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
We studied the viscosity of liquids using a capillary viscometer of our own design. The viscosity value is determined by the pressure drop in the capillary, which makes it possible to study optically opaque liquids and carry out measurements in a magnetic field. A series of calibration experiments were carried out on liquids with a known viscosity value. The obtained dependences of the magnetic-viscous effect in magnetic fluid samples with different structures and physical parameters are consistent with known theoretical and experimental data.
Texto integral
 
												
	                        Sobre autores
A. Churaev
Southwest State University
														Email: r-piter@yandex.ru
				                					                																			                												                	Rússia, 							Kursk, 305040						
E. Shel’deshova
Southwest State University
														Email: r-piter@yandex.ru
				                					                																			                												                	Rússia, 							Kursk, 305040						
E. Bondar’
Southwest State University
														Email: r-piter@yandex.ru
				                					                																			                												                	Rússia, 							Kursk, 305040						
P. Ryapolov
Southwest State University
							Autor responsável pela correspondência
							Email: r-piter@yandex.ru
				                					                																			                												                	Rússia, 							Kursk, 305040						
Bibliografia
- Schinteie G., Palade P., Vekas L., Iacob N. et al. // J. Phys. D. Appl. Phys. 2013. V. 46. No. 39. Art. No. 395501.
- Zhou H., Chen Y., Zhang Y. et al. // Tribol. Trans. 2021. V. 64. No. 1. P. 31.
- Wei F., Mallik A.K., Liu D. et al. // Sci. Reports. 2017. V. 7. No. 1. P. 4725.
- Zhao Y., Wang X.X., Lv R.Q. et al. // IEEE Trans. Instrum. Meas. 2020. V. 70. P. 1.
- Munshi M.M., Patel A.R., Deheri G.M. // IJMEMS. 2019. V. 4. No. 4. P. 982.
- Jia J., Yang G., Zhang C. et al. // Friction. 2021. V. 9. P. 61.
- Wang J., Zhuang W., Liang W. et al. // Friction. 2022. V. 10. No. 5. P. 645.
- Ряполов П.А., Соколов Е.А., Шельдешова Е.В. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 3. С. 343; Ryapolov P.A., Sokolov E.A., Sheldeshova E.V. et al. // Bull. Russ. Acad. Sci. 2023. V. 87. No. 3. P. 295.
- Ряполов П.А., Соколов Е.А., Калюжная Д.А. // Изв. РАН. Сер. физ. 2023. Т. 87. № 3. С. 348; Ryapolov P.A., Sokolov E.A., Kalyuzhnaya D.A. // Bull. Russ. Acad. Sci. 2023. V. 87. No. 3. P. 300.
- Ерин К.В., Вивчарь В.И., Шевченко Е.И. // Изв. РАН. Сер. физ. 2023. Т. 87. № 3. С. 315; Yerin K.V., Vivchar V.I., Shevchenko E.I. // Bull. Russ. Acad. Sci. 2023. V. 87. No. 3. P. 272.
- Shliomis M.I. // Lect. Notes Phys. 2008. P. 85.
- Rosensweig R.E., Kaiser R., Miskolczy G. // J. Colloid Interface Sci. 1969. V. 29. No. 4. P. 680.
- Ambacher O., Odenbach S., Stierstadt K. // Z. Phys. B. Cond. Matter. 1992. V. 86. No. 1. P. 29.
- Odenbach S. // Int. J. Modern Phys. B. 2000. V. 14. No. 16. P. 1615.
- Odenbach S., Thurm S. // In: Ferrofluids: magnetically controllable fluids and their applications. Berlin, Heidelberg: Springer, 2002. P. 185.
- Viswanath D.S., Ghosh T.K., Prasad D.H. et al. Viscosity of liquids: theory, estimation, experiment, and data. Springer Science & Business Media, 2007.
- Woodfield P.L., Seagar A., Hall W. // Int. J. Thermophys. 2012. V. 33. P. 259.
- Sato Y., Kameda Y., Nagasawa T. et al. // J. Crystal Growth. 2003. V. 249. No. 3–4. P. 404.
- Zhu P., Lai J., Shen J. et al. // Measurement. 2018. V. 122. P. 149.
- Linke J.M., Odenbach S. // J. Phys. Cond. Matter. 2015. V. 27. No. 17. Art. No. 176001.
- Pop L.M., Odenbach S. // J. Phys. Cond. Matter. 2008. V. 20. No. 20. Art. No. 204139.
- Nowak J., Odenbach S. // J. Magn. Magn. Mater. 2016. V. 411. P. 49.
- Nowak J., Borin D., Haefner S. et al. // J. Magn. Magn. Mater. 2017. V. 442. P. 383.
- Шельдешова Е.В., Ряполов П.А., Рекс А.Г. и др. // Изв. Юго-Запад. гос. ун-та. Сер. Техн. и технол. 2022. Т. 12. № 3. С. 130.
- Shel’deshova E., Churaev A., Ryapolov P. // Fluids. 2023. V. 8. No. 2. P. 47.
- Полунин В.М. Акустические свойства нанодисперсных магнитных жидкостей. М.: Физматлит, 2012. 384 с.
- Polunin V. Acoustics of nanodispersed magnetic fluids. CRC Press, 2015.
- Polunin V.M., Storozhenko A.M., Ryaplolov P.A. Mechanics of liquid nano-and microdispersed magnetic media. CRC Press, 2017.
- Afifah A.N., Syahrullail S., Sidik N.A.C. // Renew. Sustain. Energy Rev. 2016. V. 55. P. 1030.
- Felicia L.J., Vinod S., Philip J. // J. Nanofluids. 2016. V. 5. No. 1. P. 1.
- Vékás L., Raşa M., Bica D. // J. Colloid Interface Sci. 2000. V. 231. No. 2. P. 247.
- Hong R.Y., Zhang S.Z., Han Y.P. et al. // Powder Technol. 2006. V. 170. No. 1. P. 1.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 







