Study of hydrogen-bonded complexes in aqueous solutions of acetylacetone using vibrational spectroscopy and ab initio calculations
- Autores: Jumabaev A.A.1, Hushvaktov H.A.1, Absanov A.A.1, Khudaykulov B.B.1, Holikulov U.A.1, Norkulov A.M.1
- 
							Afiliações: 
							- Samarkand State University
 
- Edição: Volume 88, Nº 10 (2024)
- Páginas: 1663-1670
- Seção: Microfluidics and ferrohydrodynamics of magnetic colloids
- URL: https://rjpbr.com/0367-6765/article/view/681740
- DOI: https://doi.org/10.31857/S0367676524100251
- EDN: https://elibrary.ru/FNJCQM
- ID: 681740
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The Raman scattering and FT-IR absorption spectra of pure acetylacetone and its aqueous solutions at room temperature and atmospheric pressure were studied. The results of experiments and calculations show that with a decrease in the amount of acetylacetone in the solution, a red shift of the C=O stretching vibration band and a blue shift of the C-H stretching vibration band are observed. A potential energy distribution analysis was carried out for the monomeric molecule of the keto form of acetylacetone. The calculated and observed vibration frequencies are in good agreement. Calculations show that acetylacetone forms molecular clusters with water molecules in the form of C=O…H and C-H…O hydrogen bonds, which leads to a change in the shape of the spectral bands.
Palavras-chave
Texto integral
 
												
	                        Sobre autores
A. Jumabaev
Samarkand State University
							Autor responsável pela correspondência
							Email: jumabaev2@rambler.ru
				                					                																			                								
Department of Optics and Spectroscopy
Uzbequistão, Samarkand, 140104H. Hushvaktov
Samarkand State University
														Email: jumabaev2@rambler.ru
				                					                																			                								
Department of Optics and Spectroscopy
Uzbequistão, Samarkand, 140104A. Absanov
Samarkand State University
														Email: jumabaev2@rambler.ru
				                					                																			                								
Department of Optics and Spectroscopy
Uzbequistão, Samarkand, 140104B. Khudaykulov
Samarkand State University
														Email: jumabaev2@rambler.ru
				                					                																			                								
Department of Optics and Spectroscopy
Uzbequistão, Samarkand, 140104U. Holikulov
Samarkand State University
														Email: jumabaev2@rambler.ru
				                					                																			                								
Department of Optics and Spectroscopy
Uzbequistão, Samarkand, 140104A. Norkulov
Samarkand State University
														Email: jumabaev2@rambler.ru
				                					                																			                								
Department of Optics and Spectroscopy
Uzbequistão, Samarkand, 140104Bibliografia
- Jumabaev A., Khudaykulov B., Doroshenko I. et al. // Vibrat. Spectrosc. 2022. V. 122. P. 1.
- Hushvaktov H., Khudaykulov B., Jumabaev A. et al. // Mol. Cryst. Liq. 2022. V. 749. P. 124.
- Laptinskiy K.A., Khmeleva M.Yu., Sarmanova O.E. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. Suppl. 1. P. S8.
- Горяйнов С.В., Крылов А.С., Лихачева А.Ю. и др. // Изв. РАН. Сер. физ. 2021. Т. 85. № 9. С. 1253; Goryainov S.V., Krylov A.S., Likhacheva A.Y. et al. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 9. P. 962.
- Hushvaktov H., Jumabaev A., Doroshenko I. et al. // Vibrat. Spectrosc. 2021. V. 117. Art. No. 103315.
- Khodiev M., Holikulov U. // J. Mol. Liq. 2023. V. 382. P. 121960.
- Jumabaev A., Holikulov U., Hushvaktov H. et al. // Ukr. J. Phys. 2022. V. 67. P. 602.
- Компанеец В.В., Каримуллин К.Р., Васильева И.А., Наумов А.В. // Изв. РАН. Сер. физ. 2020. Т. 84. № 3. С. 351; Kompaneets V.V., Karimullin K.R., Vasilieva I.A., Naumov A.V. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 3. P. 272.
- Howard D., Kjaergaard H., Huang J. et al. // J. Phys. Chem. A. 2015. V. 119. P. 7980.
- Trivella A., Wassermann T.N., Mestdagh J.M. et al. // Phys. Chem. Chem. Phys. 2010. V. 12. P. 8300.
- Dannenberg J., Rios R. // J. Phys. Chem. 1994. V. 98. P. 6714.
- Caminati W., Grabow J. // J. Amer. Chem. Soc. 2006. V. 128. No. 3. P. 854.
- Belova N., Oberhammer H., Trang N. et al. // J. Organ. Chem. 2014. V. 79. P. 5412.
- Yang Z., Zhu J., Wu B. et al. // J. Chem. Eng. Data 2010. V. 55. P. 1527.
- Sandusky P. et al. // J. Chem. Educ. 2014. V. 91. P. 739.
- Tayyari S.F., Milani-nejad F. et al. // Acta A. Mol. Biomol. Spectrosc. 2000. V. 56. P. 2679.
- Xie B., Cui G., Fang W.H. et al. // J. Chem. Theory Comput. 2017. V. 13. No. 6. P. 2717.
- Boese R., Antipin M., Blaser D. et al. // J. Phys. Chem. 1998. V. 102. P. 8654.
- Cleland W.W., Kreevoy M.M. // Science. 1994. V. 264. P. 1887.
- Warshel A., Papazyan A., Kollman P.A. et al. // Science. 1994. V. 269. P. 102.
- Cleland W.W., Kreevoy M.M. // Science. 1995. V. 269. P. 1771.
- Hibbert F., Emsley J. // Adv. Phys. Org. Chem. 1990. V. 26. P. 255.
- Gurushankar K. et al. // JETP Lett. 2023. V. 117. No. 10. P. 781.
- Tukhvatullin F., Hudayberdiev B., Jumabaev A. et al. // J. Mol. Liq. 2010. V. 155. P. 67.
- Цеплин Е.Е., Цеплина С.Н., Хвостенко О.Г. // Изв. РАН. Сер. физ. 2020. Т. 84. № 5. С. 671; Tseplin E.E., Tseplina S.N., Khvostenko O.G. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 5. P. 559.
- Mavri J., Grdadolnik J. // J. Phys. Chem. A. 2001. V. 105. P. 2039.
- Nakanishi H., Morita H., Nagakura S. et al. // BCSJ. 1977. V. 50. P. 2255.
- Iijima K., Ohnogi A., Shibata S. et al. // J. Mol. Struct. 1987. V. 156. P. 111.
- Coussan S., Ferro Y., Trivella A. et al. // J. Phys. Chem. A. 2006. V. 110. P. 3920.
- Mohacek-Grosev V., Furic K., Hrvoje I. et al. // J. Phys. Chem. A. 2007. V. 111. P. 5820.
- Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 09. Wallingford: Gaussian Inc., 2009.
- Kazachenko A.S., Holikulov U., Issaoui N. et al. // Z. Phys. Chem. 2023. V. 237. No. 11. P. 1821.
- Khodiev M. Kh., Holikulov U.A., Jumabaev A. et al. // J. Mol. Liq. 2023. V. 382. Art. No. 121960.
- Kazachenko A.S., Issaoui N., Holikulov U. et al. // Z. Phys. Chem. 2024. V. 238. P. 89.
- Devlin F.J., Finley J.W., Stephens P.J. et al. // J. Phys. Chem. 1995. V. 99. No. 46. P. 16883.
- Dennington R., Keith T.A., Millam J.M. GaussView. v. 6.0.16. Semichem Inc Shawnee Mission KS, 2016.
- Tomasi J., Mennucci B., Cancès E. // J. Mol. Struct. 1999. V. 464. P. 211.
- Jamroz M.H. Vibrational energy distribution analysis VEDA 4. Warsaw, 2004—2010.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 




