Transmission functions of transmissive multilayer inhomogeneous holographic photopolymer liquid crystal diffraction structures
- Autores: Sharangovich S.N.1, Dolgirev V.O.1
- 
							Afiliações: 
							- Tomsk State University of Control and Radioelectronics Systems
 
- Edição: Volume 87, Nº 1 (2023)
- Páginas: 12-18
- Seção: Articles
- URL: https://rjpbr.com/0367-6765/article/view/654494
- DOI: https://doi.org/10.31857/S0367676522700028
- EDN: https://elibrary.ru/JGPCXN
- ID: 654494
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
A new analytical model of diffraction of quasimonochromatic light beams on spatially inhomogeneous multilayer diffraction structures formed in photopolymer material with nematic liquid crystals having smooth optical inhomogeneity in the thickness of layers is presented. It is shown that when an applied electric field isapplied to diffraction layers containing a photopolymer composition with a high proportion of liquid crystalline component, a transformation of the selective response with a significant shift in angular selectivity occurs
Sobre autores
S. Sharangovich
Tomsk State University of Control and Radioelectronics Systems
							Autor responsável pela correspondência
							Email: shr@tusur.ru
				                					                																			                												                								Russia, 634050, Tomsk						
V. Dolgirev
Tomsk State University of Control and Radioelectronics Systems
														Email: shr@tusur.ru
				                					                																			                												                								Russia, 634050, Tomsk						
Bibliografia
- Malallah R., Li H., Qi Y. et al. // J. Opt. Soc. Amer. A. 2019. V. 36. No. 3. P. 320.
- Malallah R., Li H., Qi Y. et al. // J. Opt. Soc. Amer. A. 2019. V. 36. No. 3. P. 334.
- Pen E.F., Rodionov M.Yu., Chubakov P.A. // Optoelectron. Instrum. Data Process. 2017. V. 53. No. 1. P. 59.
- Pen E.F., Rodionov M.Yu. // Quantum Electron. 2017. V. 40. No. 10. P. 919.
- Шарангович С.Н., Дудник Д.И.// Изв. РАН. Сер. физ. 2021. Т. 85. № 1. С. 14; Sharangovich S.N., Dudnik. D.I. // Bull. Russ. Acad. Sci: Phys. 2021. V. 85. No. 1. P. 8.
- Dudnik D.I., Semkin A.O., Sharangovich S.N. // J. Phys. Conf. Ser. 2021. V. 1745. Art. No. 012018.
- Yan X., Wang X., Chen Y. et al. // Appl. Phys. B. 2019. V. 125. Art. No. 67.
- Yan X., Gao L., Yang X., Dai Y. // Opt. Express. 2014. V. 22. No. 21. P. 26140.
- Kazanskiy N.L., Khonina S.N., Karpeev S.V., Porfirev A.P. // Quantum Electron. 2020. V. 50. No. 7. P. 629.
- Kudryashov S.I. // Appl. Surface Sci. 2019. V. 484. P. 948.
- Pavlov D. // Opt. Lett. 2019. V. 44. No. 2. P. 283.
- Sharangovich S.N., Dolgirev V.O. // J. Phys. Conf. Ser. 2021. Art. No. 012023.
- Sharangovich S.N., Dolgirev V.O. // IEEE Proc. 2021. Art. No. 21430788.
- Шарангович С.Н., Долгирев В.О. // Изв. РАН. Сер. физ. 2022. Т. 86. № 1. С. 35; Sharangovich S.N., Dolgirev V.O. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 1. P. 18.
- Semkin A.O., Sharangovich S.N. // Polymers. 2019. V. 11. No. 861. P. 1.
- Ноздреватых Б.Ф., Устюжанин С.В., Шарангович С.Н. // Доклады ТУСУР. 2007. № 2. С. 192.
- Доволнов Е.А., Шарангович С.Н. // Опт. и спектроск. 2008. Т. 105. № 2. С. 336; Dovolnov E.A., Sharangovich S.N. // Opt. Spectrosс. 2008. V. 105. No. 2. P. 310.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 






