Sub-terahertz polarization converter based on a silicon lattice structure

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A single-layer polarizer converting linear polarization into circular one is presented. The polarization converter consists of a lattice structure made of silicon. The polarizer is developed and optimized for the millimeter wave band, for the spectral ‘transmission window’ of 2 mm. The obtained results show that the measured values are in line with the simulation results.

Sobre autores

A. Brovko

Institute of Solid State Physics of the Russian Academy of Sciences

Email: canishe@yandex.ru
Russia, Chernogolovka

K. Dzhikirba

Institute of Solid State Physics of the Russian Academy of Sciences

Email: canishe@yandex.ru
Russia, Chernogolovka

V. Muravev

Institute of Solid State Physics of the Russian Academy of Sciences

Email: canishe@yandex.ru
Russia, Chernogolovka

I. Bahteev

Institute of Solid State Physics of the Russian Academy of Sciences

Email: canishe@yandex.ru
Russia, Chernogolovka

S. Molchanov

Institute of Solid State Physics of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: canishe@yandex.ru
Russia, Chernogolovka

Bibliografia

  1. Kirschbaum H.S., Chen S. // IEEE Trans. Microwave Theory Tech. 1957. V. 5. No. 3. P. 199.
  2. Smith P.W. Monolithic polarizer grating. US Patent No. 45516925, cl. 333/21A, H01P 1/16. 1985.
  3. Volman V., Harris D.W. Passive electromagnetic polarization shifter with dielectric slots. US Patent No. 8519899, cl. 343/756, H01O 19/00. 2013.
  4. Redd J. Polarization converting dielectric plate. US Patent No. 0266977, cl. 343/911R, H01Q 15/244. 2014.
  5. Bornemann J. // IEEE Trans. Antenn. Propag. 1993. V. 41. No. 11. P. 1588.
  6. Wang K.X., Wong H. // IEEE Trans. Antenn. Propag. 2018. V. 66. No. 8. P. 4303.
  7. Roberts A., Lin L. // Opt. Lett. 2012. V. 37. No. 11. P. 1820.
  8. Euler M., Fusco V., Dickie R. et al. // IEEE Trans. Antenn. Propag. 2011. V. 59. No. 8. P. 3103.
  9. Biscarini M., Sardi G.M., Martini E. et al. // Proc. EuCAP’13. (Gothenburg, 2013).
  10. Clendinning S., Cahill R., Zelenchuk D., Fusco V. // Microwave Opt. Technol. Lett. 2020. V. 62. No. 4. P. 1815.
  11. Clendinning S., Cahill R., Zelenchuk D., Fusco V. // Proc. 13th EuCAP (Krakow, 2019). P. 1.
  12. Karamirad M., Ghobadi C., Nourinia J. et al. // Proc. KBEI–2017. (Tehran, 2017). P. 69.
  13. Li Y., Zhang J., Qu S. et al. // J. Appl. Phys. 2015. V. 117. No. 4. Art. No. 044501.
  14. Sofi M.A., Saurav K., Koul S.K. // IEEE Trans. Microwave Theory Tech. 2020. V. 68. No. 10. P. 4138.
  15. Orr R., Goussetis G., Fusco V., Saenz E. // IEEE Trans. Antenn. Propag. 2015. V. 63. No. 5. P. 1949.
  16. Wang H.B., Cheng Y.J., Chen Z.N. // IEEE Trans. Antenn. Propag. 2019. V. 68. No. 2. P. 1186.
  17. Tharp J.S., Lail B.A., Munk B.A., Boreman G.D. // IEEE Trans. Antenn. Propag. 2007. V. 55. No. 11. P. 2983.
  18. Fei P., Shen Z., Wen X., Nian F. // IEEE Trans. Antenn. Propag. 2015. V. 63. No. 10. P. 4609.
  19. Бахтеев И.Ш., Молчанов С.Ю., Муравьев В.М., Гусихин П.А. // Изв. РАН Сер. физ. 2022. Т. 86. № 4. P. 489; Bahteev I.S., Molchanov S.Y., Muravev V.M., Gusikhin P.A. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 4. P. 400.
  20. Euler M., Fusco V., Cahill R., Dickie R. // IEEE Trans. Antenn. Propag. 2010. V. 58. No. 7. P. 2457.
  21. https://emwave.ru/terahertz-systems/generatory-teragertsovogo-izlucheniya.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (504KB)
3.

Baixar (86KB)
4.

Baixar (277KB)
5.

Baixar (737KB)

Declaração de direitos autorais © А.М. Бровко, К.Р. Джикирба, В.М. Муравьев, И.Ш. Бахтеев, С.Ю. Молчанов, 2023