Estimation of the neutron monitors’ effective energies based on the 27-day galactic cosmic rays variations
- Autores: Siruk S.A.1, Mayorov A.G.1, Yulbarisov R.F.1
- 
							Afiliações: 
							- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
 
- Edição: Volume 87, Nº 7 (2023)
- Páginas: 1038-1041
- Seção: Articles
- URL: https://rjpbr.com/0367-6765/article/view/654364
- DOI: https://doi.org/10.31857/S0367676523701855
- EDN: https://elibrary.ru/OSQFSA
- ID: 654364
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
We presented a new method of the neutron monitors’ (NM’s) effective energy estimation based on the 27‑day galactic cosmic rays (GCR) variations: using AMS-02 measurements we study rigidity dependance of 27-day variations’ amplitude and calculate the energy value so that the variability of the GCR particles at this energy is equal to that of the NM’s count rate. We examined how NM’s effective energy depends on the geomagnetic cutoff rigidity using data of several NM.
Sobre autores
S. Siruk
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
							Autor responsável pela correspondência
							Email: sstepana001@mail.ru
				                					                																			                												                								Russia, 115409, Moscow						
A. Mayorov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
														Email: sstepana001@mail.ru
				                					                																			                												                								Russia, 115409, Moscow						
R. Yulbarisov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
														Email: sstepana001@mail.ru
				                					                																			                												                								Russia, 115409, Moscow						
Bibliografia
- Richardson I.G. // Living Rev. Sol. Phys. 2018. V. 15. No. 1. P. 1.
- Picozza P., Galper A.M., Castellini G. et al. // Astropart. Phys. 2007. V. 27. No. 4. P. 296.
- Aguilar M., Ali Cavasonza L., Ambrosi G. et al. // Phys. Reports. 2021. V. 894. P. 1.
- Modzelewska R., Bazilevskaya G.A., Boezio M. et al. // Astrophys. J. 2020. V. 904. No. 1. P. 3.
- Юлбарисов Р.Ф., Галикян Н.Г., Майоров А.Г. и др. // Изв. РАН. Сер. физ. 2021. Т. 85. № 11. С. 1611; Yulbarisov R.F., Galikyan N.G., Mayorov A.G. et al. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 11. P. 1272.
- https://www.nmdb.eu.
- Usoskin I.G., Alanko-Huotary K., Kovaltsov G.A., Mursula K. // J. Geophys. Res. 2005. V. 110. Art. No. A12108.
- Alanko K., Usoskin I.G., Mursula K. et al. // Adv. Space Res. 2003. V. 32. No. 4. P. 615.
- Gil A., Asvestari E., Kovaltson G.A. // Proc. Sci. 35th ICRC (Busan, 2017). P. 32.
- Aguilar M., Ali Cavasonza L., Ambrosi G. et al. // Phys. Rev. Lett. 2021. V. 127. No. 27-31. Art. No. 271102.
- Cassiday G.L., Cooper R., Corbató S.C. et al. // Nucl. Phys. B. Proc. Suppl. 1990. V. 14. No. 1. P. 291.
- Gil A., Alania M.V. // Solar Physics. V. 291. No. 6. P. 1877.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 


