Study of the sensitivity of moisture-sensitive structures with UV reduction on the basis of ZnO produced by the sol-gel method
- Authors: Permyakov D.S.1, Belykh M.A.1, Strogonov A.V.1
- 
							Affiliations: 
							- Voronezh State Technical University
 
- Issue: Vol 87, No 9 (2023)
- Pages: 1343-1347
- Section: Articles
- URL: https://rjpbr.com/0367-6765/article/view/654620
- DOI: https://doi.org/10.31857/S0367676523702368
- EDN: https://elibrary.ru/JIIMCH
- ID: 654620
Cite item
Abstract
A structure based on a thin-film nanocrystalline zinc oxide obtained by the sol-gel method on a flexible Kapton substrate has been developed. It has been established that its electrical resistance increases significantly under the influence of moisture contained in the air. When irradiated with ultraviolet radiation, the resistance of the structure decreases by almost two orders of magnitude. After the UV exposure finish, a long-term process of restoration of electrical conductivity is observed, which is described by the fractional-exponential Kohlrausch function.
About the authors
D. S. Permyakov
Voronezh State Technical University
							Author for correspondence.
							Email: Dima.P.S@yandex.ru
				                					                																			                												                								Russia, 394006, Voronezh						
M. A. Belykh
Voronezh State Technical University
														Email: Dima.P.S@yandex.ru
				                					                																			                												                								Russia, 394006, Voronezh						
A. V. Strogonov
Voronezh State Technical University
														Email: Dima.P.S@yandex.ru
				                					                																			                												                								Russia, 394006, Voronezh						
References
- Гаськов А.М., Румянцева М.Н. // Неорг. матер. 2000. Т. 36. № 3. С. 369; Gas’kov A.M., Rumyantseva M.N. // Inorg. Mater. 2000. V. 36. No. 3. P. 293.
- Christopher B. // Sci. Reports. 2017. V. 7. No. 6053. P. 1.
- Singh H., Kumar A., Bansod B.S. et al. // RSC Advances. 2018. V. 8. P. 3839.
- Droepenu E.K., Wee B.S., Chin S.F. et al // Biointerface Res. Appl. Chem. 2022. V. 12. No. 3. P. 4261.
- Tsoutsouva M., Panagopoulos C.N., Papadimitriou D. // Mater. Sci. Engin. B. 2011. V. 176. No. 6. P. 480.
- Pranav D., Kartik P., Kamlesh C. // Proc. Technol. 2016. V. 23. P. 328.
- Skowronski L., Ciesielski A., Olszewska A. // Materials (Basel). 2020. V. 13. No. 16. P. 3510.
- Sonima M., Mini V., Arun A. // Nano Express. 2020. V. 1. No. 3. P. 1.
- Zoltan K., Csanad M., Tamas G. // Catalysis Today. 2022. V. 397. P. 16.
- Poornajar M., Marashi P., Fatmehsari D.H. // Ceram. Int. 2016. V. 42. No. 1. P. 173.
- Heitmann U., Westraadt J., O’Connell J. et al. // ACS Appl. Mater. Interfaces. 2022. V. 14. No. 36. P. 41 149.
- Aljameel A.I., Ali M.K.M. // J. Non-Oxide Glass. 2021. V. 13. No. 2. P. 21.
- Kidalov V., Dyadenchuk A., Bacherikov Y. et al // Turk. J. Phys. 2020. V. 44. No. 1. P. 55.
- Wisz G., Virt I., Sagan P. et al // Nanoscale Res. Lett. 2017. V. 12. No. 253. P. 1.
- Белых М.А. // Межвуз. сб. науч. тр. “Твердотельная электроника, микроэлектроника и наноэлектроника”. Воронеж: Изд-во ВГТУ, 2020. С. 37.
- Пермяков Д.С., Белых М.А., Строгонов А.В. // Межвуз. сб. науч. тр. “Микроэлектроника и наноэлектроника: актуальные проблемы”. Воронеж: Изд-во ВГТУ, 2021. С. 4.
- Jian Lin // Nature Commun. 2014. V. 5. No. 5714. P. 2.
- Коренблит И.Я., Шендер Е.Ф. // УФН. 1989. Т. 157. № 2. С. 267; Korenblit I.Ya., Shender E.F. // Sov. Phys. Usp. 1989. V. 32. No. 2. P. 139.
- Hochli U.T., Knorr K., Loidl A. // Adv. Phys. 1990. V. 39. P. 405.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 

 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					



