The size effects on phase transitions in ferroics
- Authors: Nechaev V.N.1, Shuba A.V.1
- 
							Affiliations: 
							- Military Educational and Scientific Centre of the Air Force N.E. Zhukovsky and Y.A. Gagarin Air Force Academy (Voronezh) of the Ministry of Defence of the Russian Federation
 
- Issue: Vol 87, No 9 (2023)
- Pages: 1229-1236
- Section: Articles
- URL: https://rjpbr.com/0367-6765/article/view/654601
- DOI: https://doi.org/10.31857/S0367676523702174
- EDN: https://elibrary.ru/HQQJZO
- ID: 654601
Cite item
Abstract
The features of phase transitions temperature behavior in nanosized ferroics are discussed in the framework of phenomenological theories. It is shown that in the case of second-order transitions to both the commensurate and incommensurate phases, the critical temperature can shift significantly depending on the characteristic dimensions of the sample and the properties of the surface. In materials with the first-order phase transition, size effects have a significant influence on the nucleation process, leading to the transition temperature shift or even the phase transition type change have been determined.
About the authors
V. N. Nechaev
Military Educational and Scientific Centre of the Air Force N.E. Zhukovsky and Y.A. GagarinAir Force Academy (Voronezh) of the Ministry of Defence of the Russian Federation
														Email: shandvit@rambler.ru
				                					                																			                												                								Russia, 394064, Voronezh						
A. V. Shuba
Military Educational and Scientific Centre of the Air Force N.E. Zhukovsky and Y.A. GagarinAir Force Academy (Voronezh) of the Ministry of Defence of the Russian Federation
							Author for correspondence.
							Email: shandvit@rambler.ru
				                					                																			                												                								Russia, 394064, Voronezh						
References
- Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Т. 5. Статистическая физика. Ч. 1. М.: Физматлит, 2002. 616 с.
- Нечаев В.Н., Шуба А.В. // Изв. РАН. Сер. физ. 2007. Т. 71. № 10. С. 1403; Nechaev V.N., Shuba A.V. // Bull. Russ. Acad. Sci. Phys. 2007. V. 71. P. 1367.
- Нечаев В.Н., Шуба А.В., Висковатых А.В. // Изв. вузов. Физика. 2015. Т. 58. № 5. С. 114; Nechaev V.N., Shuba A.V., Viskovatykh A.V. // Russ. Phys. J. 2015. V. 58. No. 5. P. 711.
- Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Т. 8. Электродинамика сплошных сред. М.: Физматлит, 2005. 656 с.
- Чандра П., Литтлвуд П.Б. Введение в теорию Ландау для сегнетоэлектриков. М.: Лаборатория знаний, 2020. 443 с.
- Цедрик М.С. Физические свойства кристаллов семейства триглицинсульфата (в зависимости от условий выращивания). Минск: Наука и техника, 1986. 216 с.
- Нечаев В.Н., Шуба А.В. Размерные эффекты в фазовых переходах и физических свойствах ферроиков: монография. М.: ИНФРА-М, 2023. 384 с.
- Glinchuk M.D., Eliseev E.A., Stephanovich V.A. // Physica B. 2002. V. 322. P. 356.
- Strukov B.A., Davitadze S.T., Kravchun S.N. et al. // J. Phys. Cond. Matter. 2003. V. 15. No. 25. P. 4331.
- Нечаев В.Н., Шуба А.В. // СУИТ. 2009. Т. 37. № 3.2. С. 271.
- Голицына О.М., Дрождин С.Н., Нечаев В.Н. и др. // ФТТ. 2013. Т. 55. № 3. С. 479; Golitsyna O.M. Drozhdin S.N., Nechaev V.N. et al. // Phys. Solid State. 2013. V. 55. No. 3. P. 529.
- Cummins H.Z. // Phys. Reports. 1990. V. 185. No. 5–6. P. 211.
- Darinskii B.M., Sidorkin A.S., Hoai Thuong Nguyen // Ferroelectrics. 2019. V. 543. P. 81.
- Бурсиан Э.В. Нелинейный кристалл (титанат бария). М.: Главн. ред. физ.-мат. лит. “Наука”, 1974. 295 с.
- Beskrovny A., Golosovsky I., Fokin A. et al. // Appl. Phys. A. 2002. V. 74. Art. No. S1001.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 

 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					




