Development of instabilities in thin aluminum foils exploded using generator with current of up to 10 kA

Capa

Citar

Texto integral

Resumo

The results of studying instabilities in flat aluminum 4-μm-thick foils exploded using the GVP generator with a short circuit current of 10 kA and a current rise time of 350 ns are presented. The dynamics of foil destruction during the explosion was studied using laser probing. During the experiments, it was ascertained that in the presence of the two-dimensional structure of foil, the growth rates of instabilities and their nature depend on the foil orientation relative to the direction of current flow. The conditions are cleared up, under which during the explosion of foils with two-dimensional inherent structures, the development of instabilities is slowed down.

Sobre autores

S. Pikuz

Lebedev Physical Institute, Russian Academy of Sciences

Email: vmr@inbox.ru
Rússia, Moscow, 119991

I. Tilikin

Lebedev Physical Institute, Russian Academy of Sciences

Email: vmr@inbox.ru
Rússia, Moscow, 119991

V. Romanova

Lebedev Physical Institute, Russian Academy of Sciences

Autor responsável pela correspondência
Email: vmr@inbox.ru
Rússia, Moscow, 119991

A. Mingaleev

Lebedev Physical Institute, Russian Academy of Sciences

Email: vmr@inbox.ru
Rússia, Moscow, 119991

T. Shelkovenko

Lebedev Physical Institute, Russian Academy of Sciences

Email: vmr@inbox.ru
Rússia, Moscow, 119991

Bibliografia

  1. McBride R.D., Slutz S.A., Jennings C.A., Sinars D.B., Cuneo M.E., Herrmann M.C., Lemke R.W., Martin M.R., Vesey R.A., Peterson K.J., Sefkow A.B., Nakhleh C., Blue B.E., Killebrew K., Schroen D., Rogers J., Laspe A., Lopez M.R., Smith I.C., Atherton B.W., Savage M., Stygar W.A., and Porter J.L. // Phys. Rev. Lett. 2012. V. 109. P. 135004.
  2. Awe T.J., McBride R.D., Jennings C.A., McBride R.D., Slutz S.A., Jennings C.A., Sinars D.B., Cuneo M.E., Herrmann M.C., Lemke R.W., Martin M.R., Vesey R.A., Peterson K.J., Sefkow A.B., Nakhleh C., Blue B.E., Killebrew K., and Schroen D. // Phys. Rev. Lett. 2013. V. 111. P. 235005.
  3. McBride R.D., Slutz S.A., Vesey R.A., et al. // Phys. Plasmas. 2016. V. 23. P. 012705.
  4. Atoyan L., Hammer D.A., Kusse B.R., Byvank T., Cahill A.D., Greenly J.B., Pikuz S.A., and Shelkovenko T.A. // Phys. Plasmas. 2016. V. 23. P. 022708.
  5. Kantsyrev V.L, Chuvatin A.S., Safronova A.S. et al. // Phys. Plasmas. 2014. V. 21. P 031204.
  6. Yager-Elorriaga D.A., Zhang P., Steiner A.M., Jordan N.M., Campbell P.C., Lau Y.Y., and Gilgenbach R.M. // Phys. Plasmas. 2016. V. 23. P. 124502.
  7. Chaikovsky S.A., Datsko I.M., Labetskaya N.A., Oreshkin E.V., Oreshkin V.I., Ratakhin N.A., Rousskikh A.G., Vankevich V.A., Zhigalin A.S., and Baksht R.B. // Phys. Plasmas. 2022. V. 29. P. 103501.
  8. Grabovskii E.V., Alexandrov V.V., Branitskii A.V., et al. // Journal of Physics: IOP Conf. Ser. 2018. V. 946. P. 01204. doi: 10.1088/1742-6596/946/1/012041.
  9. Шелковенко Т.А., Пикуз С.А., Тиликин И.Н., Мингалеев А.Р., Атоян Л., Хаммер Д.А. // Физика плазмы. 2018. Т. 44. С. 193. doi: 10.1134/S1063780X18020113.
  10. Тиликин И.Н., Шелковенко Т.А., Мингалеев А.Р., Романова В.М., Пикуз С.А. // ЖЭТФ. 2019. Т. 155. С. 1115. doi: 10.1134/S0044451019060166.
  11. Shelkovenko T.A., Pikuz S.A., Tilikin I.N., Mingaleev A.R., Romanova V.M., and Hammer D.A. // J. Appl. Phys. 2020. V. 128. 205902. doi: 10.1063/5.0019330.
  12. Shelkovenko T.A., Tilikin I.N., Mingaleev A.R., and Pikuz S.A. // Phys. Plasmas. 2020. V. 27. P. 043508. doi: 10.1063/1.5133126.
  13. Shelkovenko T.A., Tilikin I.N., Pikuz S.A., Mingaleev A.R., Romanova V.M., Atoyan L., and Hammer D.A. // Matter Radiat. Extremes. 2022. V. 7. P. 055901. doi: 10.1063/5.0098333.
  14. Бурцев В.А., Калинин Н.В., Лучинский А.В. Электpический взpыв пpоводников и его пpименение в электpофизических установках. М.: Энергоатомиздат, 1990.
  15. Sedoi V.S., Mesyats G.A., Oreshkin V.I., Valevich V.V., and Chemezova L.I. // IEEE Trans. Plasma Sci. 1999. V. 27. P. 845.
  16. Takayuki M., Matsuo N., Otsuka M., and Itoh S. // Proc. SPIE 75. 2010. P. 75222.
  17. Smilowitz L., Remelius D., Suvorova N., Bowlan P., Oschwald D., and Henson. B.F. // Appl. Phys. Lett. 2019. V. 114. P. 104102.
  18. Митрофанов К.Н., Александров В.В., Грабовский Е.В., Грищук А.Н., Фролов И.Н., Вранитский А.В., Лукин Я.Н. // Физика плазмы. 2017. Т. 43. С. 367.
  19. Грабовский Е.В., Сасоров П.В., Шевелько А.П., Александров и др. // Письма в ЖЭТФ. 2016. Т. 103. С. 394.
  20. Shelkovenko T.A., Pikuz S.A., Cahill A.D., Knapp P.F., Hammer D.A., Sinars D.B., Tilikin I.N., and Mishin S.N. // Phys. Plasmas. 2010. V. 17. P. 112707. doi: 10.1063/1.3504226.
  21. Шелковенко Т.А., Пикуз С.А., Хаммер Д.А. // Физика плазмы. 2016. Т. 42. С. 234. doi: 10.7868/S0367292116030070A.
  22. Shelkovenko T.A., Pikuz S.A., Tilikin I.N., Romanova V.M., Mishin S.N., Atoyan L., and D.A. Hammer. // IEEE Trans. Plasma Sci. 2018. V. 46. P. 3741. doi: 10.1109/TPS.2018.2852063.
  23. Шелковенко Т.А., Тиликин И.Н., Огинов А.В., Перваков К.С., Мингалеев А.Р., Романовa В.М., Пикуз С.А. // Физика плазмы. 2022. Т. 48. С. 1075. doi: 10.31857/S0367292122600510.
  24. Shelkovenko T.A., Tilikin I.N., Oginov A.V., Mingaleev A.R., Romanova V.M., and Pikuz S.A. // Matter Radiat. Extremes. 2023. V. 8. P. 055601. doi: 10.1063/5.0146820

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024