Plasma Potential Fluctuations in a Reflex Discharge with Thermionic Cathode
- Autores: Valinurov M.A.1,2, Gavrikov A.V.3, Liziakin G.D.3, Oiler A.P.3,2, Timirkhanov R.A.3
- 
							Afiliações: 
							- Joint Institute for High Temperatures, Russian Academy of Sciences
- Moscow Institute of Physics and Technology (National Research University)
- Joint Institute for High Temperatures of the Russian Academy of Sciences
 
- Edição: Volume 49, Nº 5 (2023)
- Páginas: 504-510
- Seção: LOW TEMPERATURE PLASMA
- URL: https://rjpbr.com/0367-2921/article/view/668553
- DOI: https://doi.org/10.31857/S0367292123600243
- EDN: https://elibrary.ru/VFQDNJ
- ID: 668553
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
One of the promising applications of low-temperature plasma in crossed electric and magnetic fields is plasma mass separation. To its implementation it is necessary to create a magnetized plasma with a given spatial distribution of the plasma potential. Plasma potential distribution determines the particle trajectories during separation. One of the difficulties that lie in the way of creating an efficient separator is the oscillations of the plasma potential resulting from the development of various types of instabilities. In the present work, fluctuations of the plasma potential in a reflex discharge with a thermionic cathode are studied. An analysis of the frequencies of plasma potential oscillations for magnetic fields in the range of 1–1.4 kG is presented. Measurements of the radial profiles of the root-mean-square deviation of the plasma potential are provided.
Palavras-chave
Sobre autores
M. Valinurov
Joint Institute for High Temperatures, Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)
														Email: valinurov.ma@phystech.edu
				                					                																			                												                								125412, Moscow, Russia; 141701, Dolgoprudnyi, Moscow oblast, Russia						
A. Gavrikov
Joint Institute for High Temperatures of the Russian Academy of Sciences
														Email: glizyakin@gmail.com
				                					                																			                												                								127412, Moscow, Russia						
G. Liziakin
Joint Institute for High Temperatures of the Russian Academy of Sciences
														Email: glizyakin@gmail.com
				                					                																			                												                								127412, Moscow, Russia						
A. Oiler
Joint Institute for High Temperatures of the Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)
														Email: glizyakin@gmail.com
				                					                																			                												                								127412, Moscow, Russia; 141700, Dolgoprudny, Russia						
R. Timirkhanov
Joint Institute for High Temperatures of the Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: glizyakin@gmail.com
				                					                																			                												                								127412, Moscow, Russia						
Bibliografia
- Kaganovich I.D., Smolyakov A., Raitses Y., Ahedo E., Mikellides I.G., Jorns B., Taccogna F., Gueroult R., Tsikata S., Bourdon A. et al. // Phys. Plasma. 2020. V. 27. P. 120601. https://doi.org/10.1063/5.0010135
- Gueroult R., Zweben S.J., Fisch N.J., Rax J.-M. // Phys. Plasmas. 2019. V. 26. P. 43511. https://doi.org/10.1063/1.5083229
- Choueiri E.Y. // Phys. Plasmas. 2001. V. 8. P. 1411.https://doi.org/10.1063/1.1354644
- Simon A. // Phys. Fluids. 1963. V. 6. P. 382. https://doi.org/10.1063/1.1706743
- Hoh F. C. // Phys. Fluids. 1963. V. 6. P. 1184.https://doi.org/10.1063/1.1706878
- Marusov N.A., Sorokina E.A., Ilgisonis V.I., Lakhin V.P. // Phys. Plasmas. 2019. V. 26. P. 90701. https://doi.org/10.1063/1.5111948
- Smolyakov A.I., Chapurin O., Frias W., Koshkarov O., Romadanov I., Tang T., Umansky M., Raitses Y., Kaganovich I.D., Lakhin V.P. // Plasma Phys. Control. Fusion. 2016. V. 59. P. 14041.
- Liziakin G., Antonov N., Smirnov V.S., Timirkhanov R., Oiler A., Usmanov R., Melnikov A., Vorona N., Kislen-ko S., Gavrikov A., Smirnov V.P. // J. Phys. D. Appl. Phys. 2021. V. 54. P. 414005.
- Смирнов В.П., Самохин В.П., Ворна Н.А., Гаври-ков А.В. // Физика плазмы. 2013. Т. 39. С. = Smir-nov V.P., Samokhin A.A., Vorona N.A., Gavrikov A.V. // Plasma Phys. Rep. 2013. V. 39. P. 456.https://doi.org/10.1134/S1063780X13050103
- Liziakin G., Antonov N., Usmanov R., Melnikov A., Timirkhanov R., Vorona N., Smirnov V.S., Oiler A., Kislenko S., Gavrikov A., Smirnov V.P. // Plasma Phys. Control. Fusion. 2021. V. 63. P. 032002.
- Hooper Jr. E.B. Advances in Electronics and Electron Physics. V. 27 / Ed. L. Marton, M. Claire. Academic Press. 1970. P. 295. https://doi.org/10.1017/S0022377821000829.
- Carlsson J., Kaganovich I., Powis A., Raitses Y., Romadanov I., Smolyakov A. // Phys. Plasmas. 2018. V. 25. P. 61201. https://doi.org/10.1063/1.5017467
- Powis A.T., Carlsson J.A., Kaganovich I.D., Raitses Y., Smolyakov A. // Phys. Plasmas. 2018. V. 25. P. 72110.https://doi.org/10.1063/1.5038733
- Kim J.Y., Jang J.Y., Choi J., Wang J., Jeong W.I., Elgar-hy M.A.I., Go G., Chung K.-J., Hwang Y.S. // Plasma Sources Sci. Technol. 2021. V. 30. P. 25011.
- Kemp R.F., Sellen Jr.J.M. // Rev. Sci. Instruments. 1966. V. 37. P. 455. https://doi.org/10.1063/1.1720213
- Murzaev Y., Liziakin G., Gavrikov A., Timirkhanov R., Smirnov V. // Plasma Sci. Technol. 2019. V. 21. P. 045401.https://doi.org/10.1088/2058-6272/aaf250
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 








