Air Gasification of Wood at Increased Pressure in the Filtration Combustion Mode
- Autores: Kislov V.M.1, Tsvetkov M.V.1, Zaichenko A.Y.1, Podlesniy D.N.1, Salganskaya M.V.1, Tsvetkova Y.Y.1, Salgansky E.A.1
- 
							Afiliações: 
							- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
 
- Edição: Volume 42, Nº 8 (2023)
- Páginas: 39-44
- Seção: Combustion, explosion and shock waves
- URL: https://rjpbr.com/0207-401X/article/view/674838
- DOI: https://doi.org/10.31857/S0207401X2308006X
- EDN: https://elibrary.ru/IGDKWL
- ID: 674838
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The air gasification of wood at increased pressure in the filtration combustion mode is experimentally studied. It is experimentally shown that increasing the pressure in the reactor (up to 3 atm) during the gasification of wood leads to an increase in the productivity of the experimental setup (by a factor of 1.6), a decrease in the quantity of tars formed (by a factor of 1.5), and a change in the concentrations of outgoing gases. Thermodynamic calculations of the effect of pressure at the stage of wood pyrolysis are carried out. With an increase in pressure from 1 to 9 atm, the volume concentrations of hydrogen and carbon monoxide decrease, while the volume concentrations of the water vapor and carbon dioxide increase. However, at a pyrolysis temperature of 1300 K, an increase in pressure has practically no effect on the composition of gaseous products.
Palavras-chave
Sobre autores
V. Kislov
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
														Email: vmkislov@icp.ac.ru
				                					                																			                												                								Chernogolovka, Russia						
M. Tsvetkov
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
														Email: vmkislov@icp.ac.ru
				                					                																			                												                								Chernogolovka, Russia						
A. Zaichenko
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
														Email: vmkislov@icp.ac.ru
				                					                																			                												                								Chernogolovka, Russia						
D. Podlesniy
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
														Email: vmkislov@icp.ac.ru
				                					                																			                												                								Chernogolovka, Russia						
M. Salganskaya
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
														Email: vmkislov@icp.ac.ru
				                					                																			                												                								Chernogolovka, Russia						
Yu. Tsvetkova
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
														Email: vmkislov@icp.ac.ru
				                					                																			                												                								Chernogolovka, Russia						
E. Salgansky
Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: vmkislov@icp.ac.ru
				                					                																			                												                								Chernogolovka, Russia						
Bibliografia
- Arena U. // Waste Manag. 2012. V. 32. № 4. P. 625; https://doi.org/10.1016/j.wasman.2011.09.025
- Toledo M., Arriagada A., Ripoll N., Salgansky E.A., Mujeebu M.A. // Renew. Sust. Energ. Rev. 2023. V. 177. ID 113 213; https://doi.org/10.1016/j.rser.2023.113213
- Герасимов Г.Я., Хасхачих В.В., Сычев Г.А. и др. // Хим. физика. 2022. Т. 41. № 11. С. 24; https://doi.org/10.31857/S0207401X22110048
- Смирнов В.Н., Шубин Г.А., Арутюнов А.В. и др. // Хим. физика. 2022. Т. 41. № 11. С. 52; https://doi.org/10.31857/S0207401X22110115
- Van Dyk J.C., Keyser M.J., Coertzen M. // Intern. J. Coal Geol. 2006. V. 65. № 3–4. P. 243; https://doi.org/10.1016/j.coal.2005.05.007
- Seed M.A., Williams A.R., Brown D.J., Hirschfelder H. // Proc. Third Intern. Conf. on Clean Coal Technologies for our Future. Cagliari, Italy, 2007.
- Motta I.L., Miranda N.T., Filho R.M., Maciel M.R.W. // Renew. Sust. Energ. Rev. 2018. V. 94. P. 998; https://doi.org/10.1016/j.rser.2018.06.042
- Кислов В.М., Жолудев А.Ф., Кислов М.Б., Салганский Е.А. // ЖПХ. 2019. Т. 92. № 1. С. 61; https://doi.org/10.1134/S0044461819010080
- Asadullah M. // Renew. Sust. Energ. Rev. 2014. V. 40. P. 118; https://doi.org/10.1016/j.rser.2014.07.132
- Cortazar M., Santamaria L., Lopez G. et al. // Energy Convers. Manag. 2023. V. 276. ID 116496; https://doi.org/10.1016/j.enconman.2022.116496
- Mayerhofer M., Mitsakis P., Meng X. et al. // Fuel. 2012. V. 99. P. 204; https://doi.org/10.1016/j.fuel.2012.04.022
- Wolfesberger U., Aigner I., Hofbauer H. // Environ. Prog. Sustain. Energy 2009. V. 28. № 3. P. 372; https://doi.org/10.1002/ep.10387
- Knight R.A. // Biomass Bioenerg. 2000. V. 18. № 1. P. 67; https://doi.org/10.1016/S0961-9534(99)00070-7
- Valin S., Ravel S., Guillaudeau J., Thiery S. // Fuel Process. Technol. 2010. V. 91. № 10. P. 1222; https://doi.org/10.1016/j.fuproc.2010.04.001
- Медведев С.П., Иванцов А.Н., Андержанов Э.К. и др. // Хим. физика. 2022. Т. 41. № 12. С. 56;
- Tereza A.M., Medvedev S.P., Smirnov V.N. // Acta Astronaut. 2021. V. 181. P. 612; https://doi.org/10.1016/j.actaastro.2020.09.048
- Медведев С.П., Максимова О.Г., Черепанова Т.Т. и др. // Хим. физика. 2022. Т. 41. № 11. С. 73; https://doi.org/10.31857/S0207401X22110085
- Situmorang Y.A., Zhao Z., Yoshida A., Abudula A., Guan G. // Renew. Sust. Energ. Rev. 2020. V. 117. ID 109 486; https://doi.org/10.1016/j.rser.2019.109486
- Janajreh I., Adeyemi I., Raza S.S., Ghenai C. // Ibid. 2021. V. 138. ID 110505; https://doi.org/10.1016/j.rser.2020.110505
- Ruiz G., Ripoll N., Fedorova N. et al. // Intern. J. Heat Mass. Transf. 2019. V. 136. P. 383; https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.009
- Салганский Е.А., Фурсов В.П., Глазов С.В., Салганская М.В., Манелис Г.Б. // Физика горения и взрыва. 2003. Т. 39. № 1. С. 44.
- Манелис Г.Б., Глазов С.В., Лемперт Д.Б., Салганский Е.А. // Изв. АН. Сер. хим. 2011. № 7. С. 1278.
- Глазов С.В., Полианчик Е.В. // Теорет. основы хим. технологии. 2019. Т. 53. № 2. С. 152; https://doi.org/10.1134/S0040357119020040
- Tabrizi F.F., Mousavi S.A.H.S., Atashi H. // Energy Convers. Manag. 2015. V. 103. P. 1065; https://doi.org/10.1016/j.enconman.2015.07.005
- Цветков М.В., Кислов В.М., Цветкова Ю.Ю. и др. // Хим. физика. 2022. Т. 41. № 8. С. 93; https://doi.org/10.31857/S0207401X22080143
- Трусов Б.Г. // Матер. XIV Междунар. конф. по химической термодинамике. Спб: НИИХ СПбГУ, 2002. С. 483.
- Salgansky E.A., Kislov V.M., Glazov S.V., Salganskaya M.V. // J. Combustion. 2016. ID 9637082; https://doi.org/10.1155/2016/9637082
- Kitzler H., Pfeifer C., Hofbauer H. // Fuel Process. Technol. 2011. V. 92. № 5. P. 908; https://doi.org/10.1016/j.fuproc.2010.12.009
- Hoang A.T., Huang Z., Nižetić S. et al. // Intern. J. Hydrog. Energy. 2022. V. 47. № 7. P. 4394; https://doi.org/10.1016/j.ijhydene.2021.11.091
- Habibollahzade A., Ahmadi P., Rosen M.A. // J. Clean. Prod. 2021. V. 284. ID 124718; https://doi.org/10.1016/j.jclepro.2020.124718
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 



