Two-frequency pulsed laser irradiation to stimulate the development of coniferous trees
- Authors: Lobanov A.V.1,2,3, Apasheva L.M.1, Smurova L.A.1, Ovcharenko E.N.1, Budnik M.I.1, Savransky V.V.4
- 
							Affiliations: 
							- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
- Moscow Pedagogical State University
- Plekhanov Russian University of Economics
- Prokhorov General Physics Institute of the Russian Academy of Sciences
 
- Issue: Vol 43, No 4 (2024)
- Pages: 74-80
- Section: Chemical physics of biological processes
- URL: https://rjpbr.com/0207-401X/article/view/674963
- DOI: https://doi.org/10.31857/S0207401X24040095
- EDN: https://elibrary.ru/VEKLMR
- ID: 674963
Cite item
Abstract
The possibility of using radiation from a two-frequency pulsed copper vapor laser with wavelengths of 510.6 nm and 578.2 nm with an exposure of 30 to 120 s to stimulate the development of coniferous trees (spruce, pine, larch) with a single seed irradiation is shown. The stimulation effect manifests itself at various early stages of development, such as the awakening of seeds in the aquatic environment in the first hours of the experiment (according to electron absorption spectroscopy data), seed germination, and seedling growth under stressful cultivation conditions. Possible causes of light exposure to plant seeds are discussed.
Full Text
 
												
	                        About the authors
A. V. Lobanov
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences; Moscow Pedagogical State University; Plekhanov Russian University of Economics
							Author for correspondence.
							Email: av.lobanov@mpgu.su
				                					                																			                												                	Russian Federation, 							Moscow; Moscow; Moscow						
L. M. Apasheva
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
														Email: av.lobanov@mpgu.su
				                					                																			                												                	Russian Federation, 							Moscow						
L. A. Smurova
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
														Email: av.lobanov@mpgu.su
				                					                																			                												                	Russian Federation, 							Moscow						
E. N. Ovcharenko
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
														Email: av.lobanov@mpgu.su
				                					                																			                												                	Russian Federation, 							Moscow						
M. I. Budnik
Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences
														Email: av.lobanov@mpgu.su
				                					                																			                												                	Russian Federation, 							Moscow						
V. V. Savransky
Prokhorov General Physics Institute of the Russian Academy of Sciences
														Email: av.lobanov@mpgu.su
				                					                																			                												                	Russian Federation, 							Moscow						
References
- V. I. Bukaty, V. P. Karmanchikov. Laser and harvest. Barnaul: ASU Publishing House (1999).
- P. S. Djurba and E. P. Djurba, Photonics Rus. 3, 34 (2010).
- A. V. Budagovsky, I. B. Kovsh. Laser technologies in agriculture. M.: Technosfera (2008).
- O. A. Shulgina, G. I. Kolesnikov, V. I. Zaostrovnykh, and G. I. Zaitsev, Vestnik KemGU. Series: Biol., Techn. Earth Sci. 1, 23 (2017).
- N. T. Gadzhimusieva, T. A. Asvarova, and A. S. Abdulaeva, Fundam. Res. 11, 1939 (2014).
- D. S. Buklagin, I. G. Golubev, N. P. Mishurov. Application of laser technologies in agriculture and processing industry: an analytical review. M.: FGBNU “Rosinformagrotech” (2020).
- G. Loers, D. V. Yashunsky, N. E. Nifantiev, and M. Schachner, J. Nat. Prod. 77, 1554 (2014). https://doi.org/10.1021/np4009738
- S. I. Yuran, M. R. Zaripov, V. N. Vershinin, Bulletin NGIEI. 2021. № 7 (122), 16. (2021). https://doi.org/10.24412/2227-9407-2021-7-16-25
- A. Grishkanich, A. Zhevlakov, V. Polyakov V., et al., Proc. SPIE – Int. Soc. Opt. Eng. 2016. V. 9887. 98873J. (2016). https://doi.org/10.1117/12.2228959
- G. Ya. Fraykin. Protein light sensors: photoexcited states, signaling properties and applications in optogenetics. M.: AR-Consult (2018).
- L. G. Koreneva, V. F. Zolin, B. L. Davydov. Nonlinear optics of molecular crystals. M.: Science (1985).
- B. F. Polkovnikov, J. Quantum Electron. 9, 796 (1979). https://doi.org/10.1070/QE1979v009n06ABEH009177
- M. A. Gradova, K. A. Zhdanova, N. A. Bragina, A. V. Lobanov, M. Ya. Mel’nikov, Russ. Chem. Bull. 64, 806 (2015). https://doi.org/10.1007/s11172-015-0937-z
- G. G. Komissarov, Khimicheskaya fizika 22, 24 (2003).
- A. V. Lobanov, E. N. Golubeva, E. M. Zubanova, M. Ya. Mel’nikov, High Energ. Chem. 43, 384 (2009). https://doi.org/10.1134/s0018143909050099
- S. G. Karpova, A. A. Ol’khov, A. V. Krivandin, et al., Polym. Sci. – Ser. A 61, 70 (2019). https://doi.org/10.1134/S0965545X19010140
- D. N. Nikogosyan, A. A. Oraevsky, V. I. Rupasov, Soviet J. Chem. Phys., 2 (3) 659 (1985).
- E. L. Terpugov, S. N. Udaltsov, and O. V. Degtyareva, Biophys. 66, 856 (2021).
- M. A. Ostrovsky and V. A. Nadtochenko, Russ. J. Phys. Chem. B 15, 344 (2021). https://doi.org/10.1134/S1990793121020226
- I. I. Pelevina, A. V. Akleev, I. N. Kogarko, et al., Russ. J. Phys. Chem. B 15, 1046 (2021). https://doi.org/10.1134/S1990793121060233
- K. F. Sergeichev, N. A. Lukina, L. M. Apasheva, E. N. Ovcharenko, A. V. Lobanov, Russ. J. Phys. Chem. B 16, 84 (2022). https://doi.org/10.1134/S1990793122010134
- L. A. Savintseva, A. A. Avdoshin, S. K. Ignatov, Russ. J. Phys. Chem. B 16, 445 (2022). https://doi.org/10.1134/s1990793122030216
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted

