On the Set of Stable Matchings in a Bipartite Graph
- Autores: Karzanov A.V.1
- 
							Afiliações: 
							- Central Institute of Economics and Mathematics, Russian Academy of Sciences
 
- Edição: Volume 63, Nº 8 (2023)
- Páginas: 1395-1412
- Seção: Computer science
- URL: https://rjpbr.com/0044-4669/article/view/665006
- DOI: https://doi.org/10.31857/S0044466923080082
- EDN: https://elibrary.ru/WSLYAY
- ID: 665006
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The topic of stable matchings (marriages) in bipartite graphs gained popularity beginning from the appearance of the classical Gale and Shapley work. In this paper, a detailed review of selected and other related statements in this field that describe structured, polyhedral, and algorithmic properties of such objects and their sets accompanied by short proofs is given.
Sobre autores
A. Karzanov
Central Institute of Economics and Mathematics, Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: akarzanov7@gmail.com
				                					                																			                												                								117418, Moscow, Russia						
Bibliografia
- Gale D., Shapley L.S. College admissions and the stability of marriage // Amer. Math. Monthly. 1962. V. 69. № 1. P. 9–15.
- Irving R.W. An efficient algorithm for the “stable roommates” problem // J. Algorithms. 1985. V. 6. P. 577–595.
- Tan J. A necessary and sufficient condition for the existence of a complete stable matching // J. Algorithms. 1991. V. 12. P. 154–178.
- Baiou M., Balinski M. Erratum: the stable allocation (or ordinal transportation) problem // Math. Oper. Res. 2002. V. 27. № 4. P. 662–680.
- Irving R.W., Leather P. The complexity of counting stable marriages // SIAM J. Comput. 1986. V. 15. P. 655–667.
- McVitie D., Wilson L.B. The stable marriage problem // Commun. ACM. 1971. V. 14. P. 486–492.
- Irving R.W., Leather P., Gusfield D. An efficient algorithm for the optimal stable marriage problem // J. ACM. 1987. V. 34. P. 532–543.
- Picard J. Maximum closure of a graph and applications to combinatorial problems // Manage. Sci. 1976. V. 22. P. 1268–1272.
- Vande Vate J.H. Linear programming brings marital bliss // Oper. Res. Lett. 1989. V. 8. P. 147–153.
- Teo C.P., Sethuraman J. The geometry of fractional stable matchings and its applications // Math. Oper. Res. 1998. V. 23. № 4. P. 874–891.
- Knuth D.E. Mariages stables. Les Presses de l’Université de Montreal. Montreal, 1976.
- Schrijver A. Combinatorial Optimization. Vol. A. Springer, 2003.
- McVitie D., Wilson L.B. Stable marriage assignments for unequal sets // BIT. 1970. V. 10. P. 295–309.
- Dean B.C., Munshi S. Faster algorithms for stable allocation problems // Algorithmica. 2010. V. 58. № 1. P. 59–81.
- Mourtos I., Samaris M. Stable allocations and partially ordered sets // Discr. Optimiz. 2022. V. 46. P. 100731.
- Gusfield D. Three fast algorithms for four problems in stable marriage // SIAM J. Comput. 1987. V. 16. P. 111–128.
- Polya G., Tarjan R.E., Woods D.R. Notes on Introductory Combinatorics. Birkbauser Verlag, Boston, Mass., 1983.
- Tardos È. A strongly polynomial algorithm to solve combinatorial linear problems // Oper. Research. 1986. V. 34. P. 250–256.
- Карзанов А.В. О замкнутых множествах ориентированного графа // Ж. вычисл. матем. и матем. физ. 1984. Т. 24. С. 1903–1906.
- Rothblum U.G. Characterization of stable matchings as extreme points of a polytope // Math. Programming. 1992. V. 54. P. 57–67.
- Roth A.E., Rothblum U.G., Vande Vate J.H. Stable matching, optimal assignments and linear programming // Math. Oper. Res. 1993. V. 18. P. 808–828.
- Valiant L.G. The complexity of computing the permanent // Theoret. Comp. Sci. 1979. V. 8. P. 189–201.
- Гэри М., Джонсон Д. Вычислительные машины и труднорешаемые задачи. М.: Мир, 1982.
- Provan J.S., Ball M.O. The complexity of counting cuts and of computing the probability that a graph is connected // SIAM J. Comput. 1983. V. 12. P. 777–788.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 



