Interconversions of 1,3-dipolar cycloaddition products of azomethine ylides and ylidenemalononitriles

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

New substituted spiropyrrole(zi)dynes were synthesized by the 1,3-dipolar cycloaddition reaction of ylidenemalononitriles and azomethine ylides generated in situ by condensation of isatin and α-amino acids (sarcosine, proline). The products′s features of the regio- and diastereochemical structure were elucidated depending on the nature of the amino acid and the reaction conditions. Based on data from the analysis of the spectra of cycloaddition products obtained under various conditions, as well as some additional experiments, a probable scheme for the formation of products was proposed, including retro-1,3-dipolar cycloaddition and the retro-Mannich reaction. Methods for the selective synthesis of isomeric spiropyrrolizidines were developed.

全文:

受限制的访问

作者简介

S. Borisova

Saratov State Medical University named after V. I. Razumovsky

编辑信件的主要联系方式.
Email: chuvaikinasv@gmail.com
ORCID iD: 0000-0001-8025-1296
俄罗斯联邦, Saratov, 410012

A. Meshcheryakova

Saratov State University named after N. G. Chernyshevsky

Email: chuvaikinasv@gmail.com
ORCID iD: 0000-0002-8039-1106
俄罗斯联邦, Saratov, 410012

V. Sorokin

Saratov State University named after N. G. Chernyshevsky

Email: chuvaikinasv@gmail.com
ORCID iD: 0000-0002-5861-3307
俄罗斯联邦, Saratov, 410012

参考

  1. Molteni G., Silvani A. // Eur. J. Org. Chem. 2021. Vol. 202. P. 1653. doi: 10.1002/ejoc.202100121
  2. Izmest’ev A.N., Gazieva G., Kravchenko A.N. // Chem. Heterocycl. Compd. 2021. Vol. 56. N 3. P. 255. doi: 10.1007/s10593-020-02654-z
  3. Zhao H., Zhao Y. // Molecules. 2023. Vol. 28. P. 113. doi: 10.3390/molecules28186488
  4. Breugst M., Reissig H. U. // Angew. Chem. Int. Ed. 2020. Vol. 59. P. 12293. doi: 10.1002/anie.202003115
  5. Brandão P., Marques C.S., Carreiro E.P., Pineiro M., Burke A.J. // Chem. Record. 2021. Vol. 21. N 4. P. 924. doi: 10.1002/tcr.202000167
  6. Panda S.S., Girgis A.S., Aziz M.N., Bekheit M.S. // Molecules. 2021. Vol. 28. doi: 10.3390/molecules28020618
  7. Boddy A.J., Bull J.A. // Org. Chem. Front. 2021. Vol. 8. P. 1026. doi: 10.1039/d0qo01085e
  8. Nasri S., Bayat M., Mirzaei F. // Top. Curr. Chem. 2021. Vol. 379. P. 121. doi: 10.1007/s41061-021-00337-7
  9. Ratmanova N.K., Andreev I.A., Leontiev A.V., Momotova D., Novoselov A.M., Ivanova O.A., Trushkov I.V. // Tetrahedron. 2020. Vol. 76 P. 25. doi: 10.1016/j.tet.2020.131031
  10. Chiacchio M.A., Legnani L. // Int. J. Mol. Sci. 2024. Vol. 25. P. 12. doi: 10.3390/ijms25021298
  11. Domingo L.R., Kula K., Ríos-Gutiérrez M. // Eur. J. Org. Chem. 2020. Vol. 37. P. 5938. doi: 10.1002/ejoc.202000745
  12. Senthil Kumar G., Satheeshkumar R., Kaminsky W., Platts J., Rajendra Prasad K.J. // Tetrahedron Lett. 2014. Vol. 55. P. 5475. doi: 10.1016/j.tetlet.2014.08.036
  13. Altowyan M.S., Soliman S.M., Haukka M., Al-Shaalan N.H., Alkharboush A.A., Barakat A. // Crystals. 2022. Vol. 12. N 1. Art. no. 5. doi: 10.3390/cryst12010005
  14. Barakat A., Haukka M., Soliman, S.M., Ali M., Al-Majid A.M., El-Faham A., Domingo L.R. // Molecules. 2021. Vol. 26. N 23. Art. no. 7276. doi: 10.3390/molecules26237276
  15. Barakat A., Soliman S.M., Al-Majid A.M., Ali M., Islam M.S., Elshaier Y.A.M.M., Ghabbour H.A. // J. Mol. Struct. 2018. Vol. 1152. P. 101. doi: 10.1016/j.molstruc.2017.09.086
  16. Peng C., Ren J., Xiao J.A., Zhang H., Yang H., Luo Y. // Beilstein J. Org Chem. 2014. Vol. 10. P. 352. doi: 10.3762/bjoc.10.33
  17. Anis′kov A., Klochkova I., Tumskiy R., Yegorova A. // Molecules. 2017. Vol. 22. N 12. Art. no. 2134. doi: 10.3390/molecules22122134
  18. Haddad S., Boudriga S., Porzio F., Soldera A., Askri M., Knorr M., Rousselin Y., Kubicki M.M., Golz C., Strohmann C. // J. Org. Chem. 2015. Vol. 80. N 18. P. 9064. doi: 10.1021/acs.joc.5b01399
  19. Moshkin V.S., Martynov K.V., Sosnovskikh V.Y. // Tetrahedron Lett. 2020. Vol. 61. N 16. Art. no. 151770. doi: 10.1016/j.tetlet.2020.151770
  20. Taha A.G., Elboray E.E., Kobayashi Y., Furuta T., Abbas-Temirek H.H., Aly M.F. // J. Org. Chem. 2021. Vol. 86. N 1. P. 547. doi: 10.1021/acs.joc.0c02241
  21. Dandia A., Khan S., Soni P., Indora A., Mahawar D.K., Pandya P., Chauhan C.S. // Bioorg. Med. Chem. Lett. 2017. Vol. 27. N 13. P. 2873. doi: 10.1016/j.bmcl.2017.04.083
  22. Tabatabaei Rezaei S.J., Nabid M.R., Yari A., Ng S.W. // Ultrasonics Sonochemistry. 2011. Vol. 18. N 1. P. 49. doi: 10.1016/j.ultsonch.2010.05.016
  23. Vidya S., Priyan K., Velayudhan Jayasree D., Deepthi A., Biju P.G. // Synth. Commun. 2019. Vol. 49. N 12. P. 1592. doi: 10.1080/00397911.2019.1605444
  24. Борисова С.В., Сорокин В.В. // ЖОХ. 2022. Т. 92. Вып. 1. С. 22. doi: 10.31857/S0044460X22010048; Borisova S.V., Sorokin V.V. // Russ. J. Gen. Chem. 2022. Vol. 92. N 1. P. 10. doi: 10.1134/S1070363222010030
  25. Kutyashev I.B., Ulitko M.V., Barkov A.Y., Zimnitskiy N.S., Korotaev V.Y., Sosnovskik V.Y. // New J. Chem. 2019. Vol. 43. P. 18495. doi: 10.1039/C9NJ04498A
  26. Кутяшев И.Б., Барков А.Ю., Коротаев В.Ю., Сосновских В.Я. // ХГС. 2019. Т. 55. № 6. С. 529; Kutyashev I.B., Barkov A.Yu., Korotaev V.Yu, Sosnovskikh V.Ya. // Chem. Heterocycl. Compd. 2019. Vol. 55. N 6. P. 529. doi: 10.1007/s10593-019-02490-w

补充文件

附件文件
动作
1. JATS XML
2. Scheme 1.

下载 (163KB)
3. Scheme 2.

下载 (157KB)
4. Scheme 3.

下载 (136KB)
5. Scheme 4.

下载 (90KB)
6. Scheme 5.

下载 (143KB)

版权所有 © Russian Academy of Sciences, 2024