Structural-Mechanical Modification of Amorphous Polyethylene Terephthalate and Hybrid Nanocomposite Materials Based on It

封面

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Hybrid nanocomposite materials based on polyethylene terephthalate and inorganic flame-retardant diammonium phosphate were prepared according to the fundamental strategy of environmental crazing of polymers. Structural-mechanical modification of the initial amorphous polyethylene terephthalate and the resultant nanocomposite polyethylene terephthalate-based was carried out by rolling at room temperature. The effect of preliminary rolling on the deformation behavior of polyethylene terephthalate during subsequent stretching in air and in physically active liquid media was established.

全文:

受限制的访问

作者简介

A. Dolgova

Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: dolgova2003@mail.ru
ORCID iD: 0000-0002-0551-6124
俄罗斯联邦, Moscow

D. Stolbov

Lomonosov Moscow State University

Email: dolgova2003@mail.ru
俄罗斯联邦, Moscow

S. Sorochinskaya

Lomonosov Moscow State University

Email: dolgova2003@mail.ru
俄罗斯联邦, Moscow

A. Zaikin

Lomonosov Moscow State University

Email: dolgova2003@mail.ru
俄罗斯联邦, Moscow

A. Yarusheva

Lomonosov Moscow State University

Email: dolgova2003@mail.ru
ORCID iD: 0000-0003-4997-6883
俄罗斯联邦, Moscow

S. Savilov

Lomonosov Moscow State University

Email: dolgova2003@mail.ru
ORCID iD: 0000-0002-5827-3912
俄罗斯联邦, Moscow

L. Yarusheva

Lomonosov Moscow State University

Email: dolgova2003@mail.ru
俄罗斯联邦, Moscow

O. Arzhakova

Lomonosov Moscow State University

Email: dolgova2003@mail.ru
ORCID iD: 0000-0002-8811-5528
俄罗斯联邦, Moscow

参考

  1. Roesler J., Harders H., Baeker M. Mechanical behavior of engineering materials: metals, ceramics, polymers, and composites. New York: Springer, 2007.
  2. Ward I.M., Hadley D.N. An introduction to the mechanical properties of solid polymers. New York: John Wiley & Sons, 1993.
  3. Boyce M.C., Parks D.M., Argon A.S. // Mech. Mater. 1988. Vol. 7. P. 15.
  4. Аржакова О.В., Долгова А.А., Чернов И.В., Ярышева Л.М., Волынский А.Л. // Высокомол. Соед. (А). 2007. Т. 49. № 7. С. 1502.
  5. Efimov A.V., Bazhenov S.L., Tyun’kin I.V., Volynskii A.L., Bakeev N.F. // Polym. Sci. (A). 2013. Vol. 55. N 12. P. 721. doi: 10.1134/S0965545X13120055
  6. Van Melick H.G.H., Govaert L.E., Raas B., Nauta W.J., Meijer H.E.H. // Polymer. 2003. Vol. 44. N 4. P. 1171. doi: 10.1016/S0032-3861(02)00863-7
  7. Serenko O.A., Tyun’kin I.V., Efimov A.V., Bazhenov S.L. // Polym. Sci. (A). 2007. Vol. 49. P. 69. doi: 10.1134/S0965545X07060090
  8. Tian С., Dai L., Song D., Lei D., Xiao R. // Mech. Mater. 2022 Vol. 165. P. 104138. doi: 10.1016/j.mechmat.2021.104138
  9. Padhye N. // Mech. Mater. 2023. Vol. 184. P. 104733. doi: 10.1016/j.mechmat.2023.104733
  10. Narisawa I. // Polym. Eng. Sci. 1987. Vol. 27. P. 41. doi: 10.1002/pen.760270107
  11. Kitagawa M. // J. Mat. Sci. 1982. Vol. 17. P. 2514. doi: 10.1007/BF00543882
  12. Аржакова О.В., Аржаков М.С., Бадамшина Э.Р., Брюзгина Е.Б., Брюзгин Е.В., Быстрова А.В., Ваганов Г.В., Василевская В.В., Вдовиченко А.Ю., Галлямов М.О., Гумеров Р.А., Диденко А.Л., Зефиров В.В., Карпов С.А., Музафаров А.М., Молчанов В.С., Навроцкий А.В., Новаков И.А., Панарин Е.Ф., Cедуш Н.Г., Серенко О.А., Успенский С.А., Филиппова О.Е., Хохлов А.Р., Чвалун С.Н., Шейко С.С., Шибаев А.В., Эльманович И.В., Юдин В.Е., Якиманский А.В., Ярославов А.А. // Усп. хим. 2022. Т. 91. № 12. RCR 5062; Arzhakova O.V., Arzhakov M.S., Badamshina E.R., Bryuzgina E.B., Bryuzgin E.V., Bystrova A.V., Vaganov G.V., Vasilevskaya V.V., Vdovichenko A.Y., Gallyamov M.O., Gumerov R.A., Didenko A.L., Zefirov V.V., Karpov S.V., Komarov P.V., Kulichikhin V.G., Kurochkin S.A., Larin S.V., Malkin A.Y., Milenin S.A., Muzafarov A.M., Molchanov V.S., Navrotskiy A.V., Novakov I.A., Panarin E.F., Panova I.G., Potemkin I.I., Svetlichny V.M., Sedush N.G., Serenko O.A., Uspenskii S.A., Philippova O.E., Khokhlov A.R., Chvalun S.N., Sheiko S.S., Shibaev A.V., Elmanovich I.V., Yudin V.E., Yakimansky A.V.,Yaroslavov A.A. // Russ. Chem. Rev. 2022. Vol. 3. N 12. RCR 5062. doi: 10.57634/RCR5062
  13. Баженов С.Л., Ефимов А.В., Бобров А.В., Кечекьян А.С., Гроховская Т.Е. // Высокомол. Соед. (А). 2015. Т. 57. № 3. С. 230; Bazhenov S.L., Efimov A.V., Bobrov A.V., Kechek’yan A.S., Grokhovskaya T.E. // Polym. Sci. (A). 2015. Vol. 57. N 3. P. 285. doi: 10.1134/S0965545X15030037
  14. Hutchinson J.M. The physics of glassy polymers. London: Chapman and Hall, 1997.
  15. Wishino T., Nozawa A., Kotera M., Nakamaea K. // Rev. Sci. Instrum. 2000. Vol. 71. N 5. P. 2094. doi: 10.1063/1.1150585
  16. Аржакова О.В., Копнов А.Ю., Чаплыгин Д.К., Ярышева А.Ю., Долгова А.А. // ЖОХ. 2022. Т. 92. № 10. C. 1592; Arzhakova O.V., Kopnov A.Yu., Chaplygin D.K., Yarysheva A.Yu., Dolgova A.A. // Russ. J. Gen. Chem. 2022. Vol. 92. N 10. P. 1963. doi: 10.1134/S1070363222100103
  17. Yarysheva L.M, Yarysheva A.Yu., Volynskii A.L. // Russ. J. Gen. Chem. 2019. Vol. 89. N 10. P. 2092. doi: 10.1134/S1070363219100165
  18. Arzhakova O.V., Dolgova A.A., Kopnov A.Yu., Nazarov A.I., Yarysheva A.Yu., Sazhnikov V.A. // Russ. J. Gen. Chem. 2020. Vol. 90. N 4. P. 737. doi: 10.1134/S1070363220040271

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Scanning electron micrographs of the spall (a) and surface (b) of initial polyethylene terephthalate deformed at 100% in physically active liquid media. The arrow indicates the direction of deformation in physically active liquid media

下载 (280KB)
3. Fig. 2. Scanning electron micrographs of chips (a, c, e) and surfaces (b, d, f) of polyethylene terephthalate samples deformed in physically active liquid media up to 100% in 1 (a, b), 24 (c, d) and 48 h (e, f) after pre-deformation by 25% at room temperature. Arrows indicate the direction of deformation in physically active liquid media; the direction of deformation in physically active liquid media coincides with the rolling direction

下载 (627KB)
4. Fig. 3. Dynamometric curves of polyethylene terephthalate samples in tension in air (1-3) and in physically active liquid media (4-6) 24 h after rolling. Degrees of pre-deformation of samples, %: 0 (1, 4), 25 (2, 5) и 50 (3, 6)

下载 (145KB)
5. Fig. 4. Dependence of relative stress reduction in yield stress (1) and steady-state strain development (2) during tensile stretching of polyethylene terephthalate samples in physically active liquid media on the degree of polymer pre-deformation at room temperature

下载 (93KB)
6. Fig. 5. Scanning electron micrographs of a chipped sample of polyethylene terephthalate-diammonium phosphate hybrid nanocomposite materials (a) and a map of the distribution of phosphorus atoms in the chip (white dots) (b)

下载 (361KB)

版权所有 © Russian Academy of Sciences, 2024