Synthesis and study of dense materials in the Zr–Al–C system

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The initial powders Zr, Al, C and Zr, Al, Sc were used for the synthesis of MAX phases of the composition Zr2AlC and Zr3AlC2. The highest content (50.4 vol%) of the MAX phase Zr3AlC2 was obtained using the initial powders Zr/Al/Zr in the ratio of components 1:1.5:2 with the addition of 5 vol% Al. The optimal temperature for the synthesis of a material based on the MAX phase Zr2AlC is 1525° C, a material based on Zr3AlC2 is 1575°C. The structure of the synthesized MAX materials obtained includes elongated grains of the composition Zr2AlC and Zr3AlC2, which determines their high strength. Zirconium carbide, as an intermediate phase, is always present in the final products. Due to the large evaporation of aluminum, the ZrO2 phase is also present in the synthesis products. Excess aluminum contributes to the greatest formation of Zr2AlC and Zr3AlC2 phases during synthesis.

Sobre autores

I. Arlashkin

St. Petersburg State Institute of Technology (Technical University);I.V. Grebenshchikov Institute of Silicate Chemistry of the Russian Academy of Sciences

Email: iarlashkin@mail.ru

S. Perevislov

I.V. Grebenshchikov Institute of Silicate Chemistry of the Russian Academy of Sciences

V. Stolyarova

I.V. Grebenshchikov Institute of Silicate Chemistry of the Russian Academy of Sciences;St. Petersburg State University

Bibliografia

  1. Медведева Н.И., Еняшин А.Н., Ивановский А.Л. // ЖCХ. 2011. Т. 52. № 4. С. 806
  2. Medvedeva N.I., Enyashin A.N., Ivanovskii A.L. // J. Struct. Chem. 2011. Vol. 52. P. 785. doi: 10.1134/S0022476611040226
  3. Barsoum M.W. // Progress Solid State Chem. 2000. Vol. 28. N 1-4. P. 201. doi: 10.1016/S0079-6786(00)00006-6
  4. Istomin P.V., Nadutkin A.V., Ryabkov Y.I., Goldin B.A. // Inorg. Mater. 2006. Vol. 42. N 3. P. 250. doi: 10.1134/S0020168506030071
  5. Zhang Z.F., Sun Z.M., Hashimoto H. // Mater. Lett. 2003. Vol. 57. N 7. P. 1295. doi: 10.1016/S0167-577X(02)00974-6
  6. El-Raghy T., Barsoum M.W. // J. Am. Ceram. Soc. 1999. Vol. 82. N 10. P. 2849. doi: 10.1111/j.1151-2916.1999.tb02166.x
  7. Gao N.F., Miyamoto Y., Zhang D. // J. Mater. Sci. 1999. Vol. 34. N 18. P. 4385. doi: 10.1023/A:1004664500254
  8. Jeitschko W., Nowotny H., Benesovsky F. // Monatsh. Chem. 1964. Vol. 95. N 1. P. 178. doi: 10.1007/BF00913068
  9. Perevislov S.N., Sokolova T.V., Stolyarova V.L. // Mater. Chem. Phys. 2021. Vol. 267. P. 124625. doi: 10.1016/j.matchemphys.2021.124625
  10. Bykova A.D., Semenova V.V., Perevislov S.N., Markov M.A. // Refract. Ind. Ceram. 2021. Р. 89. doi: 10.1007/s11148-021-00564-x
  11. Перевислов С.Н., Семенова В.В., Лысенков А.С. // ЖНХ. 2021. Т. 66. № 8. С. 987
  12. Perevislov S.N., Semenova V.V., Lysenkov A.S. // Russ. J. Inorg. Chem. 2021. Vol. 66. N 8. Р. 1100. doi: 10.1134/S0036023621080210
  13. Perevislov S.N., Arlashkin I.E., Lysenkov A.S. // Refract. Ind. Ceram. 2022. P. 215. doi: 10.1007/s11148-022-00709-6
  14. Lapauw T., Lambrinou K., Cabioc'h T., Halim J., Lu J., Pesach A., Rivinf O., Ozeri O., Caspi E.N., Hultman L., Eklund P., Rosén J., Barsoum M.W., Vleugels J. // J. Eur. Ceram. Soc. 2016. Vol. 36. N 8. P. 1847. doi: 10.1016/j.jeurceramsoc.2016.02.044
  15. Lapauw T., Halim J., Lu J., Cabioc'h T., Hultman L., Barsoum M.W., Lambrinou K., Vleugels J. // J. Eur. Ceram. Soc. 2016. Vol. 36. N 3. P. 943. doi: 10.1016/j.jeurceramsoc.2015.10.011
  16. Okamoto H. // J. Phase Equilib. Diff. 2002. Vol. 23. N 5. P. 455. doi: 10.1361/105497102770331497
  17. Wang T., Jin Z., Zhao J.C. // J. Phase Equilib. 2001. Vol. 22. N 5. P. 544. doi: 10.1007/s11669-001-0072-4

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2023