LOW-TEMPERATURE SYNTHESIS OF HIGHLY DISPERSED BARIUM ALUMINATE
- Autores: Kozlova L.O.1, Voroshilov I.L.1, Ioni Y.V.1,2, Ivakin Y.D.3, Kozerozhets I.V.1, Vasiliev M.G.1
- 
							Afiliações: 
							- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
- Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University
- Moscow State University
 
- Edição: Volume 69, Nº 11 (2024)
- Páginas: 2166-2173
- Seção: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://rjpbr.com/0044-457X/article/view/676606
- DOI: https://doi.org/10.31857/S0044457X24110026
- EDN: https://elibrary.ru/JMRYDA
- ID: 676606
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Palavras-chave
Sobre autores
L. Kozlova
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: kozzllova167@gmail.com
				                					                																			                												                								Moscow, Russia						
I. Voroshilov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscow, Russia
Yu. Ioni
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences; Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological UniversityMoscow, Russia; Moscow, Russia
Yu. Ivakin
Moscow State UniversityMoscow, Russia
I. Kozerozhets
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscow, Russia
M. Vasiliev
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscow, Russia
Bibliografia
- Wang Z., Wang Y., Subramanian M.A. et al. // Prog. Solid State Chem. 2022. V. 68.№100379. https://doi.org/10.1016/j.progsolidstchem.2022.100379
- Reza Rezaie M., Reza Rezaie H., Naghizadeh R. // Ceram. Int. 2009. V. 35. P. 2235. https://doi.org/10.1016/j.ceramint.2008.12.009
- Grigorovich K.V., Demin K.Y., Arsenkin A.M. et al. // Russ. Metall. 2011. V. 9. P. 912. https://doi.org/10.1134/S0036029511090126
- Pollmann H. // Rev. Mineral. Geochem. 2012. V. 74. P. 1. https://doi.org/10.2138/rmg.2012.74.1
- Djuri˘ic B., Pickering S., Mcgarry D. // J. Mater. Sci. 1999. V. 34. P. 2685. https://doi.org/10.1023/a:1004625405083
- Chen G. // J. Alloys Compd. 2006. V. 416. № 1–2. P. 279. https://doi.org/10.1016/j.jallcom.2005.08.059
- Seyidoglu T. // Open Ceram. 2023. V. 16. P. 100491. https://doi.org/10.1016/j.oceram.2023.100491
- Mohapatra M., Pattanaik D.M., Anand S. et al. // Ceram. Int. 2007. V. 33.№4. P. 531. https://doi.org/10.1016/j.ceramint.2005.10.019
- Singh V., Natarajan V., Kim D.-K. // Radiat. Eff. Defects Solids. 2008. V. 163.№3. P. 199. https://doi.org/10.1080/10420150701365854
- Yue Z., Zhong M., Ma H. et al. // J. Shanghai University. 2008. V. 12. P. 216. https://doi.org/10.1007/s11741-008-0306-1
- Zhuzhgov A.V., Kruglyakov V.Y., Suprun E.A. et al. // Russ. J. Appl. Chem. 2022. V. 95. P. 512. https://doi.org/10.1134/S1070427222040061
- Torrez-Herrera J.J., Korili S.A., Gil A. // Catal. Rev. 2022. V. 64.№3. P. 592. https://doi.org/10.1080/01614940.2020.1831756
- Rojas-Hernandez R.E., Rubio-Marcos F., Rodriguez M.A. et al. // Renew. Sust. Energ. Rev. 2018. V. 81. P. 2759. https://doi.org/10.1016/j.rser.2017.06.081
- Su Y., Chen C., Wang J. et al. // Ceram. Int. 2024. V. 50.№11. P. 18169. https://doi.org/10.1016/j.ceramint.2024.02.300
- Efimov A.A., Lizunova A.A., Volkov I.A. et al. // J. Phys.: Conf. Ser. 2016. V. 741. P. 012035. https://doi.org/10.1088/1742-6596/741/1/012035
- Malwal D., Packirisamy G. // Synthesis of Inorganic Nanomaterials. 2018. P. 255. https://doi.org/10.1016/B978-0-08-101975-7.00010-5
- Kumar A., Dixit C.K. // Advances in Nanomedicine for the Delivery of Therapeutic Nucleic Acids. 2017. P. 43. https://doi.org/10.1016/B978-0-08-100557-6.00003-1
- Benourdja S., Kaynar Umit H., Ayvacikli M. et al. // Appl. Radiat. Isot. 2018. V. 139. P. 34. https://doi.org/10.1016/j.apradiso.2018.04.023
- Lephoto M.A., Ntwaeaborwa O.M., Pitale S.S. et al. // Phys. B: Condens. Matter. 2012. V. 407. № 10. P. 1603. https://doi.org/10.1016/j.physb.2011.09.096
- Kozerozhets I., Semenov E., Kozlova L. et al. // Mater. Chem. Phys. 2023. V. 309. P. 128387. https://doi.org/10.1016/j.matchemphys.2023.128387
- Ianos R., Lazau R., Boruntea R.C. // Ceram. Int. 2015. V. 41.№2. P. 3186. https://doi.org/10.1016/j.ceramint.2014.10.171
- Kozerozhets I.V., Semenov E.A., Avdeeva V.V. et al. // Ceram. Int. 2023. V. 49.№18. P. 30381. https://doi.org/10.1016/j.ceramint.2023.06.300
- Kozlova L.O., Ioni Yu.V., Son A.G. et al. // Russ. J. Inorg. Chem. 2023. V.68. P. 1744. https://doi.org/10.1134/S0036023623602374
- Perier-Camby L., Thomas G. // Solid State Ionics. 1993. V. 63–65. P. 128. https://doi.org/10.1016/0167-2738(93)90095-K
- Panasyuk G.P., Luchkov I.V., Kozerozhets I.V. et al. // Inorg. Mater. 2013. V. 49. P. 899. https://doi.org/10.1134/S0020168513090136
- Panasyuk G.P., Azarova L.A., Belan V.N. et al. // Theor. Found. Chem. Eng. 2018. V. 52. P. 879. https://doi.org/10.1134/S0040579518050202
- Селюнина Л.А., Мишенина Л.Н., Кузнецова Е.В. и др. // Изв. ТПУ. 2014. Т. 324.№3. С. 67.
- Wang L., Hu J., Cheng Y. et al. // Scripta Mater. 2015. V. 107. P. 59. https://doi.org/10.1016/j.scriptamat.2015.05.020
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 
