Structure and properties of cation-deficient bismuth and vanadium containing CaMoO₄ — based solid solutions
- Authors: Klimova A.V.1,2, Mikhaylovskaya Z.A.2, Buyanova E.S.1, Pankrushina E.A.2, Petrova S.A.3
- 
							Affiliations: 
							- Ural Federal University the first President of Russia B.N. Yeltsin
- The Zavaritsky Institute of Geology and Geochemistry, Ural Branch of the Russian Academy of Sciences
- Institute of Metallurgy, Ural Branch of the Russian Academy of Sciences
 
- Issue: Vol 70, No 4 (2025)
- Pages: 516-526
- Section: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://rjpbr.com/0044-457X/article/view/686973
- DOI: https://doi.org/10.31857/S0044457X25040052
- EDN: https://elibrary.ru/HOUTDG
- ID: 686973
Cite item
Abstract
The article is devoted to the synthesis, determination of structural features, electrical conductivity and pigment characteristics of cation-deficient scheelite-type Ca1−1.5x–yBix+yФ0.5xMo1–yVyO4 solid solutions. Complex oxides were studied with X-ray diffraction and Raman spectroscopy. The concentration ranges of existence of different types and distortion of structure were discussed via the element ordering in A sublattice. The total electrical conductivity of the compounds was studied by impedance spectroscopy in the temperature range of 400–650°C. Arrhenius plots of electrical conductivity on the inverse temperature were constructed and analyzed. According to the diffuse light scattering data of powders, functions of color coordinates of the solid solutions were calculated.
Full Text
 
												
	                        About the authors
A. V. Klimova
Ural Federal University the first President of Russia B.N. Yeltsin; The Zavaritsky Institute of Geology and Geochemistry, Ural Branch of the Russian Academy of Sciences
							Author for correspondence.
							Email: bbgiyongchy@gmail.com
				                					                																			                												                	Russian Federation, 							Mira st., 19, Yekaterinburg, 620002; Academician Vonsovsky st., 15, Yekaterinburg, 620016						
Z. A. Mikhaylovskaya
The Zavaritsky Institute of Geology and Geochemistry, Ural Branch of the Russian Academy of Sciences
														Email: bbgiyongchy@gmail.com
				                					                																			                												                	Russian Federation, 							Academician Vonsovsky st., 15, Yekaterinburg, 620016						
E. S. Buyanova
Ural Federal University the first President of Russia B.N. Yeltsin
														Email: bbgiyongchy@gmail.com
				                					                																			                												                	Russian Federation, 							Mira st., 19, Yekaterinburg, 620002						
E. A. Pankrushina
The Zavaritsky Institute of Geology and Geochemistry, Ural Branch of the Russian Academy of Sciences
														Email: bbgiyongchy@gmail.com
				                					                																			                												                	Russian Federation, 							Academician Vonsovsky st., 15, Yekaterinburg, 620016						
S. A. Petrova
Institute of Metallurgy, Ural Branch of the Russian Academy of Sciences
														Email: bbgiyongchy@gmail.com
				                					                																			                												                	Russian Federation, 							Amundsen st., 101, Yekaterinburg, 620016						
References
- Гусева А.Ф., Пестерева Н.Н. // Журн. неорган. химии. 2023. Т. 68. № 3. С. 426. https://doi.org/10.31857/S0044457X2260164X
- Мацкевич Н.И., Семерикова А.Н., Самошкин Д.A. и др. // Журн. неорган. химии. 2023. Т. 68. № 11. С. 1637. https://doi.org/10.31857/S0044457X23600731
- Липина О.А., Спиридонова Т.С., Бакланова Я.В. и др. // Журн. неорган. химии. 2023. Т. 68. № 5. С. 603. https://doi.org/10.31857/S0044457X22601973
- Кожевникова Н.М. // Неорган. материалы. 2023. Т. 59. № 1. С. 100. https://doi.org/10.31857/S0002337X23010128
- Пийр И.В., Королева М.С., Максимов В.С. // Журн. общ. химии. 2023. Т. 93. № 2. С. 308.
- Zhao L., Zhao X., Jiang Y. et al. // J. Asian Ceram. Soc. 2014. V. 42. № 10. P. 1279. https://doi.org/10.7521/j.issn.04545648.2014.10.11
- Zalga A., Moravec Z., Pinkas J. et al. // Therm. Anal. Calorim. 2011. V. 105. № 1. P. 3. https://doi.org/10.1007/s10973-011-1367-2
- Wang Y., Ma J., Tao J. et al. // Ceram. Int. 2007. V. 33. № 4. P. 693. https://doi.org/10.1016/j.ceramint.2005.11.003
- Hoseinpur A., Bezanaj M.M., Khaki J.V. // Int. J. Mater. Res. 2016. V. 107. № 10. P. 935. https://doi.org/10.3139/146.111416
- Thongtem T., Kungwankunakorn S., Kuntalue B. et al. // J. Alloys Compd. 2010. V. 506. № 1. P. 475. https://doi.org/10.1016/j.jallcom.2010.07.033
- Thomas S.M., Balamurugan S., Ashika S.A. et al. // Results Chem. 2023. V. 5. P. 100823. https://doi.org/10.1016/j.rechem.2023.100823
- Cheng J., Liu C., Cao W. et al. // Mater. Res. Bull. 2011. V. 46. № 2. P. 185. https://doi.org/10.1016/j.materresbull.2010.11.019
- Guo J., Randall C.A., Zhang G. et al. // J. Mater. Chem. C. 2014. V. 2. № 35. P. 7364. http://dx.doi.org/10.1039/C4TC00698D
- Mikhaylovskaya Z.A., Abrahams I., Petrova S.A. et al. // J. Solid State Chem. 2020. V. 291. P. 121627. https://doi.org/10.1016/j.jssc.2020.121627
- Каймиева О.С., Михайловская З.А., Буянова Е.С. и др. // Журн. неорган. химии. 2023. Т. 68. № 4. С. 452. https://doi.org/10.31857/S0044457X22602048
- Yao W., Ye J. // J. Phys. Chem. B. 2006. V. 110. № 23. P. 11188. https://doi.org/10.1021/jp0608729
- Sameera S., Prabhakar Rao P., Divya S. // Energy Build. 2017. V. 154. P. 491. http://dx.doi.org/10.1016/j.enbuild.2017.08.089
- Mikhaylovskaya Z.A., Buyanova E.S., Petrova S.A. et al. // Chim. Techno Acta. 2021. V. 8. № 2. P. 20218204. https://doi.org/10.15826/chimtech.2021.8.2.04
- Maji B.K., Jena H., Asuvathraman R. et al. // J. Alloys Compd. 2015. V. 640. P. 475. https://doi.org/10.1016/j.jallcom.2015.04.054
- Ramadass N., Palanisamy T., Gopalakrishnan J. et al. // Solid State Commun. 1975. V. 17. № 4. P. 545. https://doi.org/10.1016/0038-1098(75)90498-6
- Lu T., Steele B.C.H. // Solid State Ionics. 1986. V. 21. № 4. P. 339. https://doi.org/10.1016/0167-2738(86)90196-7
- Vinke I.C., Diepgrond J., Boukamp B.A. et al. // Solid State Ionics. 1992. V. 57. № 1. P. 83. https://doi.org/10.1016/0167-2738(92)90067-Y
- Hoffart L., Heider U., Jörissen L. et al. // Ionics. 1995. V. 1. № 2. P. 131. https://doi.org/10.1007/BF02388670
- Wang X., Song K., Ou R. // BioRes. 2017. V. 12. № 3. P. 6173. https://doi.org/10.15376/biores.12.3.6173-6186
- Cao L., Fei X., Zhao H. // Dyes Pigm. 2017. V. 142. P. 100. https://doi.org/10.1016/j.dyepig.2017.03.024
- Massos A., Andrew A. // Environ. Pollut. 2017. V. 227. P. 139. https://doi.org/10.1016/j.envpol.2017.04.034
- Sandhya Kumari L., Prabhakar Rao P., Narayana A. et al. // Sol. Energy Mater. Sol. Cells. 2013. V. 112. P. 134. https://doi.org/10.1016/j.solmat.2013.01.022
- Roth R.S., Waring J.L. // Am. Mineral. 1963. V. 48. P. 1348.
- High-Performance Scientific Instruments and Solutions for Molecular and Materials Research, as well as for Industrial and Applied Analysis / Bruker AXS GmbH. Karlsruhe. 2017.
- PDF-4+ JCPDS International Centre for Diffraction Data. Newtown Square. 2016.
- Laugier J., Bochu B. // Basic Demonstration of CELREF Unit-Cell refinement software on a multiphase system / Collaborative Computational Project № 14. London. 2003.
- Mikhaylovskaya Z.A., Klimova A.V., Pankrushina E.A. et al. // Chim. Techno Acta. 2023. V. 10. № 4. Р. 202310411. https://doi.org/10.15826/chimtech.2023.10.4.11.
- Gomes E.O., Gouveia A.F., Gracia L. et al. // J. Phys. Chem. Lett. 2022. V. 13. № 42. P. 9883. https://doi.org/10.1021/acs.jpclett.2c02582
- Shannon R.D. // Acta Crystallogr., Sect. A: Found. 1976. V. 32. № 5. Р. 751. https://doi.org/10.1107/S0567739476001551
- Zverev P.G. // Phys. Status Solidi C. 2004. V. 1. № 11. P. 3101. https://doi.org/10.1002/pssc.200405413
- Porto S.P.S., Scott J.F. // Phys. Rev. 1967. V. 157. № 3. P. 716. https://doi.org/10.1103/PhysRev.157.716
- Панкрушина Е.А., Михайловская З.А., Щапова Ю.В. и др. // Геодинамика и тектонофизика. 2022. V. 13. № 2. P. 0609. https://doi.org/10.5800/GT-2022-13-2s-0609
- Mikhaylovskaya Z.A., Pankrushina E.A., Komleva E.V. et al. // Mater. Sci. Eng. B. 2022. V. 281. P. 115741. https://doi.org/10.1016/j.mseb.2022.115741
- Teixeira M.M., de Oliveira R.C., Oliveira M.C. et al. // Inorg. Chem. 2018. V. 57. № 24. P. 15489. https://doi.org/10.1021/acs.inorgchem.8b02807
- Wojdyr M. // J. Appl. Crystallogr. 2010. V. 43. P. 1126. https://doi.org/10.1107/S0021889810030499
- Pankrushina E.A., Kobuzov A.S., Shchapova Y.V. et al. // J. Raman Spectrosc. 2020. V. 51. № 9. P. 1549. https://doi.org/10.1002/jrs.5825
- Irvine J.T.S., Sinclair D.C., West A.R. // Adv. Mater. 1990. V. 2. № 3. P. 132. https://doi.org/10.1002/adma.19900020304
- Esaka T. // Solid State Ionics. 2000. V. 136. P. 1. https://doi.org/10.1016/S0167-2738(00)00377-5
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted








