Phase Equilibria Involving Solid Solutions in the Li–Eu–O System
- Authors: Buzanov G.A.1, Nipan G.D.1
- 
							Affiliations: 
							- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
 
- Issue: Vol 68, No 12 (2023)
- Pages: 1816-1823
- Section: ФИЗИКО-ХИМИЧЕСКИЙ АНАЛИЗ НЕОРГАНИЧЕСКИХ СИСТЕМ
- URL: https://rjpbr.com/0044-457X/article/view/666095
- DOI: https://doi.org/10.31857/S0044457X23601566
- EDN: https://elibrary.ru/ZOBPGM
- ID: 666095
Cite item
Abstract
Phase equilibria involving solid solutions in the Li–Eu–O system in an oxidizing, inert, and reducing atmospheres during annealing mixtures of various precursors subjected to preliminary mechanochemical activation at temperatures of 400–1100°C and partial pressures 
 ~ 21 and 0.01 kPa and 
  ~ 5 kPa have been studied by X-ray powder diffraction and thermogravimetry. The solubility of lithium in EuO has been first estimated, which is no less than 50–60%. For Eu2O3 and 
, it is 30% of the total amount of cations. Along with LiEuO2, the formation of crystalline mixed-valent (EuII + EuIII) phases LiEu3O4 and Li2Eu5O8 has been confirmed. The thermal behavior of solid solutions Eu1 – xLixO1 – δ based on europium monoxide and Li1 + yEu3O4 – γ in air has been studied. The concentration phase diagram of the Li–Eu–O system has been constructed.
About the authors
G. A. Buzanov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: gbuzanov@yandex.ru
				                					                																			                												                								119991, Moscow, Russia						
G. D. Nipan
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
							Author for correspondence.
							Email: gbuzanov@yandex.ru
				                					                																			                												                								119991, Moscow, Russia						
References
- Matthias B.T., Bozorth R.M., Van Vleck J.H. // Phys. Rev. Lett. 1961. V. 7. № 5. P. 160. https://doi.org/10.1103/PhysRevLett.7.160
- Schmehl A., Vaithyanathan V., Herrnberger A. et al. // Nature Mater. 2007. V. 6 P. 882. https://doi.org/10.1038/nmat2012
- Steeneken P.G., Tjeng L.H., Elfimov I. et al. // Phys. Rev. Lett. 2002. V. 88. P. 047201. https://doi.org/10.1103/PhysRevLett.88.047201
- Hasegawa Y. // Chem. Lett. 2013. V. 42. № 1. P. 2. https://doi.org/10.1246/cl.2013.2
- Lettieri J., Vaithyanathan V., Eah S.K. et al. // Appl. Phys. Lett. 2003. V. 83. P. 975. https://doi.org/10.1063/1.1593832
- Borukhovich A.S. // Mod. Electron. Mater. 2020. V. 6. № 3. P. 113. https://doi.org/10.3897/j.moem.6.3.54583
- Borukhovich A.S., Troshin A.V. Europium Monoxide Semiconductor and Ferromagnet for Spintronics. Springer Series in Materials Science. Springer, 2018. V. 265. 189 p. https://doi.org/10.1007/978-3-319-76741-3
- Королева Л.И. Магнитные полупроводники. М.: Физический факультет МГУ, 2003. 312 с.
- Бамбуров В.Г., Борухович А.С., Самохвалов А.А. Введение в физико-химию ферромагнитных полупроводников. М.: Металлургия, 1988. 206 с.
- Parfenov O.E., Averyanov D.V., Tokmachev A.M. et al. // J. Condens. Matter Phys. 2016. V. 28. № 22. P. 226001. https://doi.org/10.1088/0953-8984/28/22/226001
- Kats V.N., Nefedov S.G., Shelukhin L.A. et al. // Appl. Mater. Today. 2020. V. 19. P. 100640. https://doi.org/10.1016/j.apmt.2020.100640
- Kabanov V., Korenyuk S., Fedorenko Y. // Thin Solid Films. 2001. V. 400. № 1–2. P. 116. https://doi.org/10.1016/s0040-6090(01)01469-9
- Hashimoto Y., Wakeshima M., Matsuhira K. et al. // Chem. Mater. 2002. V. 14. № 8. P. 3245. https://doi.org/10.1021/cm010728u
- Waintal A., Gondrand M. // Mater. Res. Bull. 1967. V. 2. № 9. P. 889. https://doi.org/10.1016/0025-5408(67)90099-2
- Julien C.M., Mauger A., Zaghib K., Groult H. // Inorganics. 2014. V. 2. № 1. P. 132. https://doi.org/10.3390/inorganics2010132
- Cantwell J.R., Roof I.P., Smith M.D. et al. // Solid State Sci. 2011. V. 13. № 5. P. 1006. https://doi.org/10.1016/j.solidstatesciences.2011.02.001
- Bärnighausen H. // Z. Anorg. Allg. Chem. 1970. V. 374. № 2. P. 201. https://doi.org/10.1002/zaac.19703740209
- Bärnighausen H. // Z. Anorg. Allg. Chem. 1967. V. 349. № 5–6. P. 280 https://doi.org/10.1002/zaac.19673490508
- Nyokong T., Greedan J.E. // Inorg. Chem. 1982. V. 21. № 1. P. 398. https://doi.org/10.1021/ic00131a071
- Buzanov G.A., Nipan G.D., Zhizhin K.Yu., Kuznetsov N.T. // Russ. J. Inorg. Chem. 2017. V. 62. № 5. P. 551. https://doi.org/10.1134/s0036023617050059
- Nipan G.D., Buzanov G.A., Zhizhin K.Y., Kuznetsov N.T. // Russ. J. Inorg. Chem. 2016. V. 61. № 14. P. 1689. https://doi.org/10.1134/s0036023616140035
- Buzanov G.A., Nipan G.D., Zhizhin K.Y., Kuznetsov N.T. // Dokl. Chem. 2015. V. 465. V. 1. P. 268. https://doi.org/10.1134/s0012500815110063
- Buzanov G.A., Nipan G.D. // Russ. J. Inorg. Chem. 2022. V. 67. P. 1035. https://doi.org/10.1134/S0036023622070051
- Chang K., Hallstedt B. // CALPHAD. 2011. V. 35. P. 160. https://doi.org/10.1016/j.calphad.2011.02.003
- Massalski T.B. Binary Alloy Phase Diagrams – 2nd edition. ASM International, Materials Park, Ohio, USA. 1990. 3589 p.
- Казенас Е.К., Цветков Ю.В. Испарение оксидов. М.: Наука, 1997. 542 с.
- Sun Y., Qiao Z. // High Temp. Mater. Process. 1999. V. 3. № 1. P. 125. https://doi.org/10.1615/HighTempMatProc.v3.i1.110
- Rudolph D., Enseling D., Jüstel T., Schleid T. // Z. Anorg. Allg. Chem. 2017. V. 643. № 21. P. 1525. https://doi.org/10.1002/zaac.201700224
- Nakajima H., Nohira T., Ito Y. // Electrochem. Solid-State Lett. 2004. V. 7. № 5. P. E27. https://doi.org/10.1149/1.1664052
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					





