Zeeman Splitting of Excitons in GaAs/AlGaAs Quantum Wells in the Faraday Geometry
- Autores: Grigor'ev F.S.1, Chukeev M.A.2, Lovtsyus V.A.3, Efimov Y.P.2, Eliseev S.A.3
- 
							Afiliações: 
							- St. Petersburg State University
- Resource Center “Nanophotonics,” St. Petersburg State University
- Spin Optics Laboratory, St. Petersburg State University
 
- Edição: Volume 164, Nº 5 (2023)
- Páginas: 761-769
- Seção: Articles
- URL: https://rjpbr.com/0044-4510/article/view/653615
- DOI: https://doi.org/10.31857/S0044451023110068
- EDN: https://elibrary.ru/PMGEIT
- ID: 653615
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The Zeeman splitting in the GaAs/AlGaAs heterostructure is investigated experimentally. Numerical analysis performed for the wavefunctions of exciton states, which takes into account the bands of heavy holes, light holes, and the band split by the spin–orbit interaction, is the quantitative agreement with experimental data both for an exciton with a heavy hole and for that with a light hole. It is shown that for explaining the experimental values of the Zeeman splitting in the quantum well under investigation, it is necessary to take into account both the Coulomb interaction and the contribution from the three bands in the valence band. The effect of screening of exciton states by a 2D gas of electrons with concentration n ≈ 109 cm–2 is described. Numerical calculations are performed for a large range of quantum well widths and aluminum concentrations in barriers; the chart of the dependence of the effective g factor on these parameters is plotted for magnetic field B = 5 T.
Sobre autores
F. Grigor'ev
St. Petersburg State University
														Email: f.grigoriev@spbu.ru
				                					                																			                												                								198504, St. Petersburg, Russia						
M. Chukeev
Resource Center “Nanophotonics,” St. Petersburg State University
														Email: f.grigoriev@spbu.ru
				                					                																			                												                								198504, St. Petersburg, Russia						
V. Lovtsyus
Spin Optics Laboratory, St. Petersburg State University
														Email: f.grigoriev@spbu.ru
				                					                																			                												                								198504, St. Petersburg, Russia						
Yu. Efimov
Resource Center “Nanophotonics,” St. Petersburg State University
														Email: f.grigoriev@spbu.ru
				                					                																			                												                								198504, St. Petersburg, Russia						
S. Eliseev
Spin Optics Laboratory, St. Petersburg State University
							Autor responsável pela correspondência
							Email: f.grigoriev@spbu.ru
				                					                																			                												                								198504, St. Petersburg, Russia						
Bibliografia
- G. E. W. Bauer and T. Ando, Phys. Rev. B 37, 3130(R) (1988).
- H. Wang, M. Jiang, R. Merlin, and D. G. Steel, Phys. Rev. Lett. 69, 804 (1992).
- N. J. Traynor, R. J. Warburton, M. J. Snelling, and R. T. Harley, Phys. Rev. B 55, 15701 (1997).
- В. Б. Тимофеев, М. Байер, А. Форхел, М. Потемски, Письма в ЖЭТФ 64, 52 (1996).
- L. M. Roth, B. Lax, and S. Zwerdling, Phys. Rev. 114, 90 (1959).
- W. Zawadzki, P. Pfe er, R. Bratschitsch et al., Phys. Rev. B 78, 245203 (2008).
- I. A. Yugova, A. Greilich, D. R. Yakovlev et al., Phys. Rev. B 75, 245302 (2007).
- W. Shichi, T. Ito, M. Ichida et al., Jpn. J. Appl. Phys. 48, 063002 (2009).
- А. А. Киселев, Л. В. Моисеев, ФТТ 38, 1574 (1996).
- J. J. Davies, D. Wolverson, V. P. Kochereshko et al., Phys. Rev. Lett. 97, 187403 (2006).
- L. C. Smith, J. J. Davies, D. Wolverson et al., Phys. Rev. B 78, 085204 (2008).
- J. J. Davies, L. C. Smith, D. Wolverson et al., Phys. Rev. B 81, 085208 (2010).
- L. C. Smith, J. J. Davies, D. Wolverson et al., Phys. Rev. B 83, 155206 (2011).
- P. S. Grigoryev, O. A. Yugov, S. A. Eliseev et al., Phys. Rev. B 93, 205425 (2016).
- М. В. Дурнев, ФТТ 56, 1364 (2014).
- M. V. Durnev, M. M. Glazov, and E. L. Ivchenko, Phys. E 44, 797 (2012).
- Д. В. Кулаковский, С. И. Губарев, Ю. Е. Лозовик, Письма в ЖЭТФ 74, 123 (2001).
- R. C. Iotti and L. C. Andreani, Phys. Rev. B 56, 3922 (1997).
- A. D'Andrea, N. Tomassini, L. Ferrari et al., J. Appl. Phys. 83, 7920 (1998).
- E. L. Ivchenko, Optical spectroscopy of semiconductor nanostructures, Springer-Verlag, New York (2004).
- E. S. Khramtsov, P. A. Belov, P. S. Grigoryev et al., J. Appl. Phys. 119, 184301 (2016).
- P. S. Grigoryev, V. G. Davydov, S. A. Eliseev et al., Phys. Rev. B 96, 155404 (2017).
- P. A. Belov, Phys. E 112, 96 (2019).
- M. A. Chukeev, A. S. Kurdyubov, V. A. Lovtcius et al., arXiv:2304.04988 (2023).
- Г. Л. Бир, Г. Е. Пикус, Симметрия и деформационные эффекты в полупроводниках, Наука, Москва (1972).
- R. T. Phillips, G. C. Nixon, T. Fujita et al., Sol. St.Comm. 98, 287 (1996).
- G. V. Astakhov, V. P. Kochereshko, D. R. Yakovlev et al., Phys. Rev. B 65, 115310 (2002).
- K. Wagner, E. Wietek, J. D. Ziegler et al., Phys. Rev. Lett. 125, 267401 (2020).
- R. A. Sergeev and R. A. Suris, Phys. St. Sol. (b) 227, 387 (2001).
- I. Bar-Joseph, Semicond Sci. Technol. 20, R29 (2005).
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 
