Noether symmetries and some exact solutions inf(R, T2) Theory
- Authors: Sharif M.1, Gul M.Z1
- 
							Affiliations: 
							- The University of Lahore
 
- Issue: Vol 163, No 4 (2023)
- Pages: 496-502
- Section: Articles
- URL: https://rjpbr.com/0044-4510/article/view/653528
- DOI: https://doi.org/10.31857/S0044451023040065
- EDN: https://elibrary.ru/LRECZQ
- ID: 653528
Cite item
Abstract
The main objective of this article is to examine some physically viable solutions through the Noether symmetry technique in f ( R, T 2) theory. In order to investigate Noether equations, symmetry generators and conserved quantities, we use a speci c model of this modi ed theory. We nd exact solutions and examine the behavior of various cosmological quantities. It is found the behavior these quantities is consistent with current observations indicating that this theory describes the cosmic accelerated expansion. We conclude that generators of Noether symmetry and conserved quantities exist in this theory.
About the authors
M. Sharif
The University of Lahore
														Email: jetp@kapitza.ras.ru
				                					                																			                												                								Lahore-54000, Pakistan						
M. Z Gul
The University of Lahore
							Author for correspondence.
							Email: jetp@kapitza.ras.ru
				                					                																			                												                								Lahore-54000, Pakistan						
References
- A.V. Filippenko and A.G. Riess, Phys. Rep. 307, 31 (1998)
- M. Tegmark, M.A. Strauss, M.R. Blanton, K. Abazajian, S. Dodelson, H. Sandvik, X. Wang, D.H. Weinberg, I. Zehavi, N.A. Bahcall, and F. Hoyle, Phys. Rev. D 69, 103501 (2004).
- A.D. Felice and S.R. Tsujikawa, Living Rev. Relativ. 13, 3 (2010)
- S. Nojiri and S.D. Odintsov, Phys. Rep. 505, 59 (2011).
- N. Katirci and M. Kavuk, Eur. Phys. J. Plus 129, 163 (2014).
- M. Roshan and F. Shojai, Phys. Rev. D 94, 044002 (2016).
- C.V.R. Board and J.D. Barrow, Phys. Rev. D 96, 123517 (2017).
- S. Bahamonde, M. Marciu, and P.Rudra, Phys. Rev. D 100, 083511 (2019).
- M. Sharif and M.Z. Gul, Phys. Scr. 96, 025002 (2021)
- Phys. Scr. 96, 125007 (2021)
- Chin. J. Phys. 80, 58 (2022).
- M. Sharif and M.Z. Gul, Int. J. Mod. Phys. A 36, 2150004 (2021)
- Universe 7, 154 (2021)
- Int. J. Geom. Methods Mod. Phys. 19, 2250012 (2021)
- Chin. J. Phys. 71, 365 (2021)
- Mod. Phys. Lett. A 37, 2250005 (2022).
- E. Noether, Tramp. Th. Stat, Phys 1, 189 (1918)
- T. Feroze, F.M. Mahomed, and A. Qadir, Nonlinear Dyn. 45, 65 (2006).
- S. Capozziello, M. De Laurentis, and S.D. Odintsov, Eur. Phys. J. C 72, 1434 (2012).
- S. Capozziello, R.D. Ritis, and A.A. Marino, Class. Quantum Gravity 14, 3259 (1997).
- S. Capozziello, G. Marmo, and C.P.Rubano, Int. J. Mod. Phys. D 6, 491 (1997).
- A.K. Sanyal, Phys. Lett. B 524, 177 (2002).
- U. Camci and Y. Kucukakca,: Phys. Rev. D 76, 084023 (2007).
- D. Momeni and H. Gholizade, Int. J. Mod. Phys. D 18, 1 (2009).
- Y. Kucukakca, U. Camci, and I. Semiz, Gen. Relat. Gravit. 44, 1893 (2012).
- S. Basilakos, S. Capozziello, M. De Laurentis, A. Paliathanasis, and M. Tsamparlis, Phys. Rev. D 88, 103526 (2013).
- U. Camci, Eur. Phys. J. C 74, 3201 (2014)
- J. Cosmol. Astropart. Phys. 07, 002 (2014).
- U. Camci and J. Cosmol, J. Cosmol. Astropart. Phys. 2014, 2 (2014).
- U. Camci, A. Yildirim, and I. Basaran, Astropart. Phys. 76, 29 (2016).
- S. Capozziello, S.J.G. Gionti, and D. Vernieri, J. Cosmol. Astropart. Phys. 1601, 015 (2016).
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 

 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					